Effects of interspecific competition on crop yield and nitrogen utilisation in maize-soybean intercropping system

https://doi.org/10.17221/665/2020-PSECitation:

Feng L., Yang W.T., Zhou Q., Tang H.Y., Ma Q.Y., Huang G.Q., Wang S.B. (2021): Effects of interspecific competition on crop yield and nitrogen utilisation in maize-soybean intercropping system. Plant Soil Environ., 67: 460–467.

download PDF

Intercropping system plays a crucial role in improving crop yield, nitrogen utilisation efficiency (NUE) and economic benefit. The difference in crop yield and interspecific relationship under different bandwidth and row ratio allocation patterns are still unclear. A field experiment was carried out to explore change regularities between crop yield and interspecific relationships under maize soybean intercropping with different bandwidths and row ratios. The results showed that the yield of intercropped crops was lower than that of the sole crop. The nitrogen accumulation (NA), NUE and nitrogen competition ratio was the highest under the intercropping mode with a bandwidth of 2.0 m, which indicated that this mode was more conducive to the N uptake and utilisation in crops. In all intercropping systems, nitrogen equivalent ratio (NER) and land equivalent ratio (LER) were all greater than one, indicating that intercropping systems were conducive to improving land utilisation efficiency and NUE. Under the same bandwidth pattern, expanding the maize soybean row ratio from 2 : 4 to 3 : 4 was beneficial to the improvement of LER, NER, NUE, crop group yield. In conclusion, it was preferable in the NA, NUE, crop group yield under the system of bandwidth 2.0 m and row ratio 2 : 2, which could be a reference for maize soybean intercropping system.

References:
Cong W.F., Hoffland E., Li L., Six J., Sun J.H., Bao X.G., Zhang F.S., Van D.W.W. (2015): Intercropping enhances soil carbon and nitrogen. Global Change Biology, 21: 1715–1726. https://doi.org/10.1111/gcb.12738
 
Du J.B., Han T.F., Gai J.Y., Yong T.W., Sun X., Wang X.C., Yang F., Liu J., Shu K., Liu W.G., Yang W.Y. (2018): Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 17: 747–754. https://doi.org/10.1016/S2095-3119(17)61789-1
 
Eskandari H. (2011): Intercropping of wheat (Triticum aestivum) and bean (Vicia faba): effects of complementarity and competition of intercrop components in resource consumption on dry matter production and weed growth. African Journal of Biotechnology, 10: 17755–17762.
 
Fowler D., Steadman C.E., Stevenson D., Coyle M., Rees R.M., Skiba U.M., Sutton M.A., Cape J.N., Dore A.J., Vieno M., Simpson D., Zaehle S., Stocker B.D., Rinaldi M., Facchini M.C., Flechard C.R., Nemitz E., Twigg M., Erisman J.W., Butterbach-Bahl K., Galloway J.N. (2015): Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics Discussions, 15: 13849–13893. https://doi.org/10.5194/acp-15-13849-2015
 
Hou P., Liu Y., Liu W., Liu G.Z., Xie R.Z., Wang K.R., Ming B., Wang Y.H., Zhao R.L., Zhang W.J., Wang Y.J., Bian S.F., Ren H., Zhao X.Z., Liu P., Chang J.Z., Zhang G.H., Liu J.Y., Li S.K. (2020): How to increase maize production without extra nitrogen input. Resources, Conservation and Recycling, 160: 104913. https://doi.org/10.1016/j.resconrec.2020.104913
 
Jensen E.S., Carlsson G., Hauggaard-Nielsen H. (2020): Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agronomy for Sustainable Development, 40: 5. https://doi.org/10.1007/s13593-020-0607-x
 
Li B., Li Y.Y., Wu H.M., Zhang F.F., Li C.J., Li X.X., Lambers H., Li L. (2016): Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences, 113: 6496–6501. https://doi.org/10.1073/pnas.1523580113
 
Li C.J., Hoffland E., Kuyper T.W., Yu Y., Zhang C.C., Li H.G., Zhang F.S., van der Werf W. (2020): Syndromes of production in intercropping impact yield gains. Nature Plants, 6: 653–660. https://doi.org/10.1038/s41477-020-0680-9
 
Li L., Li S.M., Sun J.H., Zhou L.L., Bao X.G., Zhang H.G., Zhang F.S. (2007): Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus deficient soils. Proceedings of the National Academy of Sciences, 104: 11192–11196. https://doi.org/10.1073/pnas.0704591104
 
Li Q.Z., Sun J.H., Wei X.J., Christie P., Zhang F.S., Li L. (2011): Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant and Soil, 339: 147–161. https://doi.org/10.1007/s11104-010-0561-5
 
Lithourgidis A., Dordas C., Damalas C., Vlachostergios D. (2011): Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5: 396–410.
 
Liu T.D., Song F.B. (2012): Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica, 50: 215–222. https://doi.org/10.1007/s11099-012-0011-0
 
Luo S.S., Yu L.L., Liu Y., Zhang Y., Yang W.T., Li Z.X., Wang J.W. (2016): Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system. European Journal of Agronomy, 81: 78–85. https://doi.org/10.1016/j.eja.2016.09.002
 
Mead R., Willey R.W. (1980): The concept of a "Land Equivalent Ratio" and advantages in yields from intercropping. Experimental Agriculture, 16: 217–228. https://doi.org/10.1017/S0014479700010978
 
Mommer L., Kirkegaard J.A., van Ruijven J. (2016): Root-root interactions: towards a rhizosphere framework. Trends in Plant Science, 21: 209–217. https://doi.org/10.1016/j.tplants.2016.01.009
 
Raza M.A., Feng L.Y., van der Werf W., Iqbal N., Khan I., Khan A., Din A.M.U., Naeem M., Meraj T.A., Hassan M.J., Khan A., Lu F.Z., Liu X., Ahmed M., Yang F., Yang W.Y. (2020): Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food and Energy Security, 9: 1–14. https://doi.org/10.1002/fes3.199
 
Raza M.A., Gul H.N., Wang J., Yasin H.S., Qin R.J., Khalid M.H.B., Naeem M., Feng L.Y., Iqbal N., Gitari H., Ahmad S., Battaglia M., Ansar M., Yang F., Yang W.Y. (2021): Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: a case study in Punjab province, Pakistan. Journal of Cleaner Production, 308: 127282. https://doi.org/10.1016/j.jclepro.2021.127282
 
Tan Y., Hu F.L., Chai Q., Li G., Coulter J.A., Zhao C., Yu A.Z., Fan Z.L., Yin W. (2020): Expanding row ratio with lowered nitrogen fertilization improves system productivity of maize/pea strip intercropping. European Journal of Agronomy, 113: 125986. https://doi.org/10.1016/j.eja.2019.125986
 
Tilman D. (2020): Benefits of intensive agricultural intercropping. Nature Plants, 6: 604–605. https://doi.org/10.1038/s41477-020-0677-4
 
Tilman D., Balzer C., Hill J., Befort B.L. (2011): Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108: 20260–20264. https://doi.org/10.1073/pnas.1116437108
 
Wang G.L., Chen X.P., Cui Z.L., Yue S.C., Zhang F.S. (2014): Estimated reactive nitrogen losses for intensive maize production in China. Agriculture, Ecosystems and Environment, 197: 293–300. https://doi.org/10.1016/j.agee.2014.07.014
 
Yang C.H., Fan Z.L., Chai Q. (2018): Agronomic and economic benefits of pea/maize intercropping systems in relation to N fertilizer and maize density. Agronomy, 8: 52. https://doi.org/10.3390/agronomy8040052
 
Yang F., Huang S., Gao R.C., Liu W.G., Yong T.W., Wang X.C., Wu X.L., Yang W.Y. (2014): Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Research, 155: 245–253. https://doi.org/10.1016/j.fcr.2013.08.011
 
Yang W., Wang J.W., Wu P., Zhang Y., Li Z.X. (2013): Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. Field Crops Research, 146: 44–50. https://doi.org/10.1016/j.fcr.2013.03.008
 
Yin W., Chai Q., Zhao C., Yu A.Z., Fan Z.L., Hu F.L., Fan H., Guo Y., Coulter J.A. (2020): Water utilization in intercropping: a review. Agricultural Water Management, 241: 106335. https://doi.org/10.1016/j.agwat.2020.106335
 
Zhang Y.T., Liu J., Zhang J.Z., Liu H.B., Liu S., Zhai L.M., Wang H.Y., Lei Q.L., Ren T.Z., Yin C.B. (2015): Row ratios of intercropping maize and soybean can affect agronomic efficiency of the system and subsequent wheat. PLoS One, 10: e0129245. https://doi.org/10.1371/journal.pone.0129245
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti