Distribution of root system of hop plants in hop gardens with regular rows cultivation

https://doi.org/10.17221/672/2019-PSECitation:Brant V., Krofta K., Kroulík M., Zábransky P., Prochazka P., Pokorny J. (2020): Distribution of root system of hop plants in hop gardens with regular rows cultivation. Plant Soil Environ., 66: 317-326.
download PDF

Spatial distribution of the root system of hop (Humulus lupulus L.) in the soil profile is a less explored issue. However, it is known that it can play an important role in the development of new tillage technologies, fertilisation and irrigation, including the use of precision farming principles. In the period from 2015 to 2018, the distribution of the hop root system was evaluated on twelve hop plants of five Czech hop cultivars. The age of the plants ranged from 3 to 15 years. The evaluation took place in the Saaz region at regularly cultivated hop gardens. As part of the evaluation, the root systems of hop plants were removed from the soil profile and subsequently spatially reconstructed. With the help of infrared image analysis, the root intensity in the soil profile and the morphology of the root systems were determined. The root depth of the plants ranged from 1 m to 2.25 m. The lateral width of the hop root system ranged from 0.6 m to 1.5 m. As a result of the rows cultivation, the lateral development of the roots in the upper soil layers was limited. The results were confirmed using the infrared image analysis method to specify the distribution of the root system and the root density of hop plants in the soil profile.


Abram V., Čeh B., Vidmar M., Hercezi M., Lazić N., Bucik V., Možina S.S., Košir I.J., Kač M., Demšar L., Ulrih N.P. (2015): A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Industrial Crops and Products, 64: 124–134. https://doi.org/10.1016/j.indcrop.2014.11.008
Almaguer C., Schönberger C., Gastl M., Arendt E.K., Becker T. (2014): Humulus lupulus – a story that begs to be told. A review. Journal of the Institute of Brewing, 120: 289–314. https://doi.org/10.1002/jib.160
Anken T., Irla E., Gysi M. (1999): Bildanalyse – billig und vielseitigeinsetzbar. Agrarforschung, 6: 240–241.
Auerswald K. (2002): Schätzung des C-Faktorsaus Fruchtarten statistiken für Ackerflächen in Gebieten mit subkontinentalem bis subatlantischem Klimanördlich der Alpen. Landnutzung und Landentwicklung, 43: 1–5.
Bedini S., Flamini G., Girardi J., Cosci F., Conti B. (2015): Not just for beer: evaluation of spent hops (Humulus lupulus L.) as
a source of eco-friendly repellents for insect pests of stored foods. Journal of Pest Science, 88: 583–592.
Brant V. (ed) (2016): Strip Tillage. Prague, Profi Press, 135. (In Czech)
Brant V., Kroulík M., Krofta K., Zábranský P., Procházka P., Pokorný J. (2016): Spatial distribution of the root system of hops in the soil. Chmelařství, 4: 42–46. (In Czech)
Brant V., Zábranský P., Škeříková M., Pivec J., Kroulík M., Procházka L. (2017): Effect of row width on splash erosion and throughfall in silage maize crops. Soil and Water Research, 12: 39–50. https://doi.org/10.17221/121/2015-SWR
Castillo-Ruiz F.J., Pérez-Ruiz M., Blanco-Roldán G.L., Gil-Ribes J.A., Agüera A. (2015): Development of a telemetry and yield-mapping system of olive harvester. Sensors, 15: 4001–4018. https://doi.org/10.3390/s150204001
Graf T., Beck M., Mauermeier M., Ismann D., Portner J., Doleschel P., Schmidhalter U. (2014): Humulus lupulus – the hidden half. Brewing Science, 67: 161–166.
Hameed I.A., Bochtis D.D., Sørensen C.G., Vougioukas S. (2012): An object-oriented model for simulating agricultural in-field machinery activities. Computers and Electronics in Agriculture, 81: 24–32. https://doi.org/10.1016/j.compag.2011.11.003
Kabelka D., Kincl D., Janeček M., Vopravil J., Vráblík P. (2019): Reduction in soil organic matter loss caused by water erosion in inter-rows of hop gardens. Soil and Water Research, 14: 172–182. https://doi.org/10.17221/135/2018-SWR
Kolenc Z., Vodnik D., Mandelc S., Javornik B., Kastelec D., Čerenak A. (2016): Hop (Humulus lupulus L.) response mechanisms in drought stress: proteomic analysis with physiology. Plant Physiology and Biochemistry, 105: 67–78. https://doi.org/10.1016/j.plaphy.2016.03.026
Korovetska H., Novák O., Jůza O., Gloser V. (2014): Signalling mechanisms involved in the response of two varieties of Humulus lupulus L. to soil drying: I. changes in xylem sap pH and the concentrations of abscisic acid and anions. Plant and Soil, 380: 375–387. https://doi.org/10.1007/s11104-014-2101-1
Kučera J., Krofta K. (2009): Mathematical model for prediction of yield and alpha acid contents from meteorological data for Saaz aroma variety. ISHS Acta Horticulturae, 848: 131–140. https://doi.org/10.17660/ActaHortic.2009.848.14
Lipecki J., Berbeć S. (1997): Soil management in perennial crops: orchards and hop gardens. Soil and Tillage Research, 43: 169–184. https://doi.org/10.1016/S0167-1987(97)00039-1
Miller R.H. (1958): Morphology of Humulus lupulus. L. developmental anatomy of the primary root. American Journal of Botany, 45: 418–431. https://doi.org/10.1002/j.1537-2197.1958.tb13146.x
Moir M. (2000): Hops – a millennium review. Journal of the American Society of Brewing Chemists, 58: 131–146. https://doi.org/10.1094/ASBCJ-58-0131
Mongelli A., Rodolfi M., Ganino T., Marieschi M., Dall’Asta C., Bruni R. (2015): Italian hop germplasm: characterization of wild Humulus lupulus L. genotypes from Northern Italy by means of phytochemical, morphological traits and multivariate data analysis. https://doi.org/10.1016/j.indcrop.2015.02.036
Industrial Crops and Products, 70: 16–27.
Nakawuka P., Peters T.P., Kenny S., Walsh D. (2017): Effect of deficit irrigation on yield quantity and quality, water productivity and economic returns of four cultivars of hops in the Yakima Valley, Washington State. Industrial Crops and Products, 98: 82–92. https://doi.org/10.1016/j.indcrop.2017.01.037
Nesvadba V., Krofta K., Polončíková Z. (2011): Hop (Humulus lupulus L.) breeding aimed at high contents of desmethylxanthohumol (DMX). Agriculture (Poľnohospodárstvo), 57: 105–109. https://doi.org/10.2478/v10207-011-0011-2
Neve R.A. (1991): Hops. Heidelberg, Springer Netherlands, 266. ISBN 978-94-011-3106-3
Patzak J., Nesvadba V., Henychová A., Krofta K. (2010): Assessment of the genetic diversity of wild hops (Humulus lupulus L.) in Europe using chemical and molecular analyses. Biochemical Systematics and Ecology, 38: 136–145. https://doi.org/10.1016/j.bse.2009.12.023
Postman J.D., DeNoma J.S., Reed B.M. (2005): Detection and elimination of viruses in USDA hop (Humulus lupulus L.) germplasm collection. ISHS Acta Horticulturae, 668: 143–148. https://doi.org/10.17660/ActaHortic.2005.668.18
Rossini F., Loreti P., Provenzano M.E., De Santis D., Ruggeri R. (2016): Agronomic performance and beer quality assessment of twenty hop cultivars grown in Central Italy. Italian Journal of Agronomy, 11: 180–187. https://doi.org/10.4081/ija.2016.746
Rybáček V. (ed) (1980): Chmelařství. Prague, SZN, 426. (In Czech)
Sachl J. (1974): Autumn cultivation in hop gardens. Chmelařství, 9: 150–151. (In Czech)
Sharma Y., Ashoka P. (2015): Precision farming and use of sensors in Horticulture. Progressive Research – An International Journal Society for Scientific Development, 10 (special-VI): 3244–3248.
Shishehgar R., Rezaie A., Nazeri M. (2012): Study of sedation, pre-anesthetic and anti-anxiety effects of hop (Humulus lupulus L.) extract compared with diazepam in rats. Journal of Animal and Veterinary Advances, 11: 2570–2575. https://doi.org/10.3923/javaa.2012.2570.2575
Sobotik M., Graf T., Himmelbauer M., Bodner G., Bohner A., Loiskandl W. (2018): In-situ root system characterization of hop and maize via soil profile excavation. Die Bodenkultur: Journal of Land Management, Food and Environment, 69: 121–130. https://doi.org/10.2478/boku-2018-0011
Steenackers B., De Cooman L., De Vos D. (2015): Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review. Food Chemistry, 172: 742–756. https://doi.org/10.1016/j.foodchem.2014.09.139
Stevens R. (1967): The chemistry of hop constituents. Chemical Reviews, 67: 19–71. https://doi.org/10.1021/cr60245a002
Stumpf F., Auerswald K. (2006): Hochaufgelöste Erosions prognosekarten von Bayern. Wasserwirtschaft, 7–8: 70–74. https://doi.org/10.1007/BF03241348
Štranc J. (1984): Soil compaction in hop gardens and importance of autumn subsoiling. Chmelařství, 11: 167–168. (In Czech)
Turner S.F., Benedict C.A., Darby H., Lori A.H., Simonson P., Sirrine J.R., Murphy K.M. (2011): Challenges and opportunities for organic hop production in the United States. Agronomy Journal, 103: 1645–1654. https://doi.org/10.2134/agronj2011.0131
Van Opstaele F., Praet T., Aerts G., Cooman L.D. (2013): Characterization of novel single-variety oxygenated sesquiterpenoid hop oils fractions via headspace solid-phase microextraction and gas chromatography-mass spectrometry/olfaktometry. Journal of Agricultural and Food Chemistry, 61: 10555–10564. https://doi.org/10.1021/jf402496t
Wample R.L., Farrar S.L. (1983): Yield and quality of furrow and trickle irrigated hop (Humulus lupulus L.) in Washington State. Agricultural Water Management, 7: 457–470. https://doi.org/10.1016/0378-3774(83)90034-3
Wieser P., Zorn W., Degner J., Werner A. (2007): Hopfen. Thüringer Landesanstalt für Landwirtschaft 3. Auflage, 21.
Zanoli P., Zavatti M. (2008): Pharmacognostic and pharmacological profile of Humulus lupulus L. Journal of Ethnopharmacology, 116: 383–396. https://doi.org/10.1016/j.jep.2008.01.011
download PDF

© 2020 Czech Academy of Agricultural Sciences