Laboratory tests for aerobic bioremediation of the contaminated sites in the Czech Republic

https://doi.org/10.17221/673/2019-PSECitation:Chumchalová J., Kubal M. (2020): Laboratory tests for aerobic bioremediation of the contaminated sites in the Czech Republic. Plant Soil Environ., 66: 191-199.
download PDF

Laboratory-scale testing methods applicable to evaluation of contaminated subsurface microbial communities are discussed in relation to their potential in supporting effective site bioremediation. Both culture-dependent and culture-independent techniques are considered here with special emphasis on their capacity to contribute to bioremediation system design, in optimal cases by providing information on contaminant degradation rates. In this regard, microbial soil respiration tests seem to be the most useful tool since microbial soil respiration is a sensitive and easily measurable parameter for determination of metabolic activity within the sample and is closely related to other microbial parameters such as microbial biomass.

References:
Bachoon D.S., Hodson R.E., Araujo R. (2001): Microbial community assessment in oil-impacted salt marsh sediment microcosms by traditional and nucleic acid-based indices. Journal of Microbiological Methods, 46: 37–49. https://doi.org/10.1016/S0167-7012(01)00260-3
 
Baek K.H., Yoon B.D., Cho D.H., Kim B.H., Oh H.M., Kim H.S. (2009): Monitoring bacteria population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil. Journal of Microbiology and Biotechnology, 19: 339–345. https://doi.org/10.4014/jmb.0807.423
 
Baldrian P. (2009): Microbial enzyme-catalyzed processes in soils and their analysis. Plant, Soil and Environment, 55: 370–378. https://doi.org/10.17221/134/2009-PSE
 
Bargiela R., Herbst F.A., Martínez-Martínez M., Seifert J., Rojo D., Cappello S., Genovese M., Crisafi F., Denaro R., Chernikova T.N., Barbas C., von Bergen M., Yakimov M.M., Ferrer M., Golyshin P.N. (2015): Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics, 15: 3508–3520. https://doi.org/10.1002/pmic.201400614
 
Cikánková J., Koblížková E., Mertl J., Pokorný J., Ponocná T., Rollerová M., Vlčková V. (2015): Report on the Environment of the Czech Republic. Prague, Ministry of the Environment of the Czech Republic. Available at https://www.cenia.cz/wp-content/uploads/2019/03/Report-on-the-Environment-of-the-Czech-Republic_2015.pdf
 
Chikere C.B., Okpokwasili G.C., Chikere B.O. (2011): Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech, 1: 117–138. https://doi.org/10.1007/s13205-011-0014-8
 
Coccia A.M., Gucci P.M.B., Lacchetti I., Beccaloni E., Paradiso R., Beccaloni M., Musmeci L. (2009): Hydrocarbon contaminated soil treated by bioremediation technology: microbiological and toxicological preliminary findings. Environmental Biotechnology, 5: 61–72.
 
Dangi A.K., Sharma B., Hill R.T., Shukla P. (2019): Bioremediation through microbes: systems biology and metabolic engineering approach. Critical Reviews in Biotechnology, 39: 79–98. https://doi.org/10.1080/07388551.2018.1500997
 
Dawson J.J.C., Godsiffe E.J., Thompson I.P., Ralebitso-Senior T.K., Killham K.S., Paton G.I. (2007): Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biology https://doi.org/10.1016/j.soilbio.2006.06.020
 
and Biochemistry, 39: 164–177.
 
Desai C., Pathak H., Madamwar D. (2010): Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresource Technology, 101: 1558–1569. https://doi.org/10.1016/j.biortech.2009.10.080
 
Diplock E., Mardlin D.P., Killham K.S., Paton G.I. (2009): Predicting bioremediation of hydrocarbons: laboratory to field scale. Environmental Pollution, 157: 1831–1840. https://doi.org/10.1016/j.envpol.2009.01.022
 
Eisentraeger A., Hund-Rinke K., Roembke J. (2005): Assessment of ecotoxicity of contaminated soil using bioassays. In: Margesin R., Schinner F. (eds.): Manual of Soil Analysis. Heidelberg, Springer-Verlag, 321–359. ISBN 978-3-540-28904-3
 
Foght J., Aislabie J. (2005): Enumeration of soil microorganisms. In: Margesin R., Schinner F. (eds.): Manual of Soil Analysis. Heidelberg, Springer-Verlag, 261–280. ISBN 978-3-540-28904-3
 
Frankenberg W.T.Jr., Dick W.A. (1983): Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47: 945–951. https://doi.org/10.2136/sssaj1983.03615995004700050021x
 
Gałązka A., Grządziel J., Gałązka R., Ukalska-Jaruga A., Strzelecka J., Smreczak B. (2018): Genetic and functional diversity of bacterial microbiome in soils with long term impacts of petroleum hydrocarbons. Frontiers in Microbiology, 9: 1923. https://doi.org/10.3389/fmicb.2018.01923
 
Galiulin R.V., Bashkin V.N., Galiulina R.A. (2012): Degradation of petroleum hydrocarbons in soil under the action of peat compost. Solid Fuel Chemistry, 46: 328–329. https://doi.org/10.3103/S0361521912050047
 
Guo H., Yao J., Cai M.M., Qian Y.G., Guo Y., Richnow H.H., Blake R.E., Doni S., Ceccanti B. (2012): Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere, 87: 1273–1280. https://doi.org/10.1016/j.chemosphere.2012.01.034
 
Hollender J., Althoff K., Mundt M., Dott W. (2003): Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test. Chemosphere, 53: 269–275. https://doi.org/10.1016/S0045-6535(03)00556-3
 
Insam H. (2001): Developments in soil microbiology since the mid 1960s. Geoderma, 100: 389–402. https://doi.org/10.1016/S0016-7061(01)00029-5
 
Jørgensen K.S. (2007): In situ bioremediation. In: Laskin A.I., Sariaslani S., Gadd G.M. (eds.): Advances in Applied Microbiology. California, Academic Press, 61: 285–305. ISBN: 9780123870445
 
Kaczyñska G., Borowik A., Wyszkowska J. (2015): Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water, Air, and Soil Pollution, 226: 372. https://doi.org/10.1007/s11270-015-2642-9
 
Kao C.M., Chen C.S., Tsa F.Y., Yang K.H., Chien C.C., Liang S.H., Yang C.A., Chen S.C. (2010): Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. Journal of Hazardous Materials, 178: 409–416. https://doi.org/10.1016/j.jhazmat.2010.01.096
 
Li C.Y., Xia F.J., Zhang Y.H., Chang C.C., Wei D., Wei L. (2017): Molecular biological methods in environmental engineering. Water Environment Research, 89: 942–959. https://doi.org/10.2175/106143017X15023776270197
 
Littlefield-Wyer J.G., Brooks P., Katouli M. (2008): Application of biochemical fingerprinting and fatty acid methyl ester profiling to assess the effect of the pesticide Atradex on aquatic microbial communities. Environmental Pollution, 153: 393–400. https://doi.org/10.1016/j.envpol.2007.08.016
 
Liu Q., Tang J., Bai Z., Hecker M., Giesy J.P. (2015): Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield, China. Scientific Reports, 5: 11068. https://doi.org/10.1038/srep11068
 
Loick N., Weisener C. (2014): Novel molecular tools to assess microbial activity in contaminated environments. In: Parmar N., Singh A. (eds): Geomicrobiology and Biogeochemistry. Berlin, Heidelberg, Springer, 17–35. ISBN 978-3-642-41837-2
 
Malik S., Beer M., Megharaj M., Naidu R. (2008): The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environment International, 34: 265–276. https://doi.org/10.1016/j.envint.2007.09.001
 
Malla M.A., Dubey A., Yadav S., Kumar A., Hashem A., Abd-Allah E.F. (2018): Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Frontiers in Microbiology, 9: 1132. https://doi.org/10.3389/fmicb.2018.01132
 
Margesin R., Zimmerbauer A., Schinner F. (2000): Monitoring of bioremediation by soil biological activities. Chemosphere, 40: 339–346. https://doi.org/10.1016/S0045-6535(99)00218-0
 
Margesin R., Hämmerle M., Tscherko D. (2007): Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microbial Ecology, 53: 259–269. https://doi.org/10.1007/s00248-006-9136-7
 
Modrzyñski J.J., Christensen J.H., Mayer P., Brandt K.K. (2016): Limited recovery of soil microbial activity after transient exposure to gasoline vapors. Environmental Pollution, 216: 826–835. https://doi.org/10.1016/j.envpol.2016.06.054
 
Moeskops B., Sukristiyonubowo, Buchan D., Sleutel S., Herawaty L., Husen E., Saraswati R., Setyorini D., De Neve S. (2010): Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Applied Soil Ecology, 45: 112–120. https://doi.org/10.1016/j.apsoil.2010.03.005
 
MŽP ČR (2011): Methodological Guidance for Contaminated Sites Risk Assessment. Prague, Ministry of the Environment of the Czech Republic.
 
National Research Council (1993): In Situ Bioremediation: When Does it Work? Washington, The National Academies Press. ISBN: 978-0-309-04896-5
 
Ngom B., Liu X.D. (2014): Techniques for tracking microbial community structure and function in natural environment and engineered systems. International Journal of Science and Research, 3: 800–807.
 
Nybroe O., Brandt K.K., Nicolaisen M.H., Sørensen J. (2006): Methods to detect and quantify bacteria in soil. In: van Elsas J.D., Jansson J.K., Trevors J.T. (eds.): Modern Soil Microbiology. Boca Raton, CRC Press, 283–316. ISBN: 9780429196300
 
Pacwa-Płociniczak M., Płaza G.A., Piotrowska-Seget Z. (2016): Monitoring the changes in a bacterial community in petroleum-polluted soil bioaugmented with hydrocarbon-degrading strains. Applied Soil Ecology, 105: 76–85. https://doi.org/10.1016/j.apsoil.2016.04.005
 
Panagos P., Van Liedekerke M., Yigini Y., Montanarella L. (2013): Contaminated sites in Europe: review of the current situation based on data collected through a European network. Journal of Environmental and Public Health, 2013: 158764. https://doi.org/10.1155/2013/158764
 
Paton G.I., Iroegbu C.O., Dawson J.J.C. (2003): Microbiological characterisation of a diesel contaminated beach site. Marine Pollution Bulletin, 46: 903–906. https://doi.org/10.1016/S0025-326X(03)00118-8
 
Paton G.I., Viventsova E., Kumpene J., Wilson M.J., Weitz H.J., Dawson J.J.C. (2006): An ecotoxicity assessment of contaminated forest soils from Kola Peninsula. Science of The Total Environment, 355: 106–117. https://doi.org/10.1016/j.scitotenv.2005.04.036
 
Polyak Y.M., Bakina L.G., Chugunova M.V., Mayachkina N.V., Gerasimov A.O., Bure V.M. (2018): Effect of remediation strategies on biological activity of oil-contaminated soil – A field study. International Biodeterioration and Biodegradation, 126: 57–68. https://doi.org/10.1016/j.ibiod.2017.10.004
 
Riffaldi R., Levi-Minzi R., Cardelli R., Palumbo S., Saviozzi A. (2006): Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, and Soil Pollution, 170: 3–15. https://doi.org/10.1007/s11270-006-6328-1
 
Rosselló-Mora R., Amann R. (2001): The species concept of prokaryotes. FEMS Microbiology Reviews, 25: 39–67. https://doi.org/10.1111/j.1574-6976.2001.tb00571.x
 
Sandrin T.R., Herman D.C., Maier R.M. (2009): Physiological methods. In: Maier R.M., Pepper I.L., Gerba Ch.P. (eds.): Environmental Microbiology. 2nd Edition. Burlington, Academic Press, 191–223. ISBN: 9780080919409
 
Sanscartier D., Reimer K., Koch I., Laing T., Zeeb B. (2009): An investigation of the ability of a 14C-labeled hydrocarbon mineralization test to predict bioremediation of soils contaminated with petroleum hydrocarbons. Bioremediation Journal, 13: 92–101. https://doi.org/10.1080/10889860902902057
 
Schinner F., Ohlinger R., Kandeler E., Margesin R. (1996): Methods in Soil Biology. Berlin, Heidelberg, Springer-Verlag. ISBN 978-3-642-60966-4
 
SEKM (2009): Information System of the Czech Contaminated Sites. Prague, Ministry of the Environment of the Czech Republic. Available at http://info.sekm.cz/statistiky
 
Siles J.A., Margesin R. (2018): Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Applied Microbiology and Biotechnology, 102: 4409–4421. https://doi.org/10.1007/s00253-018-8932-6
 
Rastogi G., Sani R.K. (2011): Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I., Ahmad F., Pichtel J. (eds.): Microbes and Microbial Technology: Agricultural and Environmental Applications. New York, Springer Science+Business Media, 29–57. ISBN 978-1-4419-7931-5
 
US EPA (1991): Site Characterization for Subsurface Remediation. EPA/625/4-91/026. Washington, United States Environmental Protection Agency, 193–201.
 
Utobo E.B., Tewari L. (2015): Soil enzymes as bioindicators of soil ecosystem status. Applied Ecology and Environmental Research, 13: 147–169.
 
Wang S.Y., Kuo Y.C., Hong A., Chang Y.M., Kao C.M. (2016): Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemosphere, 164: 558–567. https://doi.org/10.1016/j.chemosphere.2016.08.128
 
Whiteley A.S., Bailey M.J. (2000): Bacterial community structure and physiological state within an industrial phenol bioremediation system. Applied and Environmental Microbiology, 66: 2400–2407. https://doi.org/10.1128/AEM.66.6.2400-2407.2000
 
Wolińska A., Kuźniar A., Szafranek-Nakonieczna A., Jastrzębska N., Roguska E., Stępniewska Z. (2016): Biological activity of autochthonic bacterial community in oil-contaminated soil. Water, Air, and Soil Pollution, 227: 130–141. https://doi.org/10.1007/s11270-016-2825-z
 
Wu M., Li W., Dick W.A., Ye X., Chen K., Kost D., Chen L. (2017): Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere, 169: 124–130. https://doi.org/10.1016/j.chemosphere.2016.11.059
 
Yao H.Y., Chapman S., Thornton B., Paterson E. (2015): 13C PLFAs: a key to open the soil microbial black box? Plant and Soil, 392: 3–15. https://doi.org/10.1007/s11104-014-2300-9
 
Yergeau E., Arbour M., Brousseau R., Juck D., Lawrence J.R., Masson L., Whyte L.G., Greer C.W. (2009): Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Applied and Environmental Microbiology, 75: 6258–6267. https://doi.org/10.1128/AEM.01029-09
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti