Arbuscular mycorrhizae modify winter wheat root morphology and alleviate phosphorus deficit stress

https://doi.org/10.17221/678/2017-PSECitation:Lazarevic B., Losak T., Manschadi A.M. (2018): Arbuscular mycorrhizae modify winter wheat root morphology and alleviate phosphorus deficit stress. Plant Soil Environ., 64: 47-52.
download PDF
Arbuscular mycorrhizal (AM) root colonization is known to have beneficial effects on plant growth especially under phosphorus (P) deficit conditions. The objectives of present study were: (i) to quantify changes in early wheat root development of AM-inoculated (AMI) and AM-free (AMF) roots under limited P availability; (ii) to assess possible mitigating effect of AM inoculation on photochemical efficiency under P deficit stress. AMI (inoculated with Rhizophagus irregularis) and AMF wheat plants were grown for 20 days in low (1 μmol/L) and high (50 μmol/L) P treatments. AM inoculation affected root morphology and shoot P concentration in low P treatment. AM inoculation alleviated reduction of the total root length in low P treatment, mainly due to an increase of fine roots length (< 0.5 mm). Contrastingly, shoot dry weight was reduced by AM inoculation in low P treatment. P deficiency decreased photochemical efficiency of wheat plants. However, due to increased sink capacity and facilitated nutrient concentrations AM inoculation alleviates phosphorus deficit stress and increased photochemical efficiency.
References:
Adair Karen L., Wratten Steve, Lear Gavin (2013): Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial. Environmental Microbiology Reports, 5, 404-413  https://doi.org/10.1111/1758-2229.12049
 
Atkinson D., Black K. E., Forbes P. J., Hooker J. E., Baddeley J. A., Watson C. A. (2003): The influence of arbuscular mycorrhizal colonization and environment on root development in soil. European Journal of Soil Science, 54, 751-757  https://doi.org/10.1046/j.1351-0754.2003.0565.x
 
Bates T.R., Lynch J.P. (2001): Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil, 263: 243–250. https://doi.org/10.1023/A:1012791706800
 
Feldmann F., Gillessen M., Hutter I., Schneider C. (2009): Should we breed for effective mycorrhiza symbioses? In: Feldmann F., Alford D.V., Furk C. (eds): Crop Plant Resistance to Biotic and Abiotic Factors. Braunschweig, Deutsche Phytomedizinische Gesellschaft, 507–522.
 
Gregory J.P. (2006): Plant Roots: Growth, Activity and Interaction with Soils. Oxford, Blackwell Publishing Ltd.
 
Hernández Iker, Munné-Bosch Sergi (2015): Linking phosphorus availability with photo-oxidative stress in plants. Journal of Experimental Botany, 66, 2889-2900  https://doi.org/10.1093/jxb/erv056
 
Hinsinger P. (2001): Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 237: 173–195. https://doi.org/10.1023/A:1013351617532
 
Jin Liang, Wang Qian, Wang Qiang, Wang Xiaojuan, Gange Alan C. (2017): Mycorrhizal-induced growth depression in plants. Symbiosis, 72, 81-88  https://doi.org/10.1007/s13199-016-0444-5
 
Kaldorf Michael, Ludwig-Muller Jutta (2000): AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiologia Plantarum, 109, 58-67  https://doi.org/10.1034/j.1399-3054.2000.100109.x
 
Kozumplik V., Martinić-Jerčić Z. (2000): Breeding of field and vegetable crops in the Republic of Croatia. Agriculturae Conspectus Scientificus, 65: 129–141. (In Croatian)
 
Li Huiying, Smith Sally E., Holloway Robert E., Zhu Yongguan, Smith F. Andrew (2006): Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 172, 536-543  https://doi.org/10.1111/j.1469-8137.2006.01846.x
 
López-Bucio José, Cruz-Ramı́rez Alfredo, Herrera-Estrella Luis (2003): The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6, 280-287  https://doi.org/10.1016/S1369-5266(03)00035-9
 
Lynch J. P. (2011): Root Phenes for Enhanced Soil Exploration and Phosphorus Acquisition: Tools for Future Crops. PLANT PHYSIOLOGY, 156, 1041-1049  https://doi.org/10.1104/pp.111.175414
 
Magnavaca R., Gardner C.O., Clark R.B. (1987): Evaluation of inbred maize lines for aluminium tolerance in nutrient solution. In: Gabelman H.W., Loughman B.C. (eds): Genetic Aspects of Plant Mineral Nutrition. Dordrecht, Martinus Nijhoff, 255–265.
 
MALAMY J. E. (2005): Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment, 28, 67-77  https://doi.org/10.1111/j.1365-3040.2005.01306.x
 
Manschadi Ahmad M., Hammer Graeme L., Christopher John T., deVoil Peter (2008): Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303, 115-129  https://doi.org/10.1007/s11104-007-9492-1
 
Pellegrino Elisa, Öpik Maarja, Bonari Enrico, Ercoli Laura (2015): Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 84, 210-217  https://doi.org/10.1016/j.soilbio.2015.02.020
 
Paul Quick W., Mills John D. (1988): The kinetics of adenine nucleotide binding to chloroplast ATPase, CF0-CF1, during the illumination and post illumination periodi in isolated pea thylakoids. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 936, 222-227  https://doi.org/10.1016/0005-2728(88)90239-3
 
Rychter A.M., Rao I.M. (2005): Role of phosphorus in photosynthetic carbon metabolism. In: Pessarakli M. (ed): Handbook of Photosynthesis. Boca Raton, 2nd Edition. CRC Press.
 
SAS Institute Inc. (2011): Base SAS® 9.3 Procedures Guide. Cary, SAS Institute Inc.
 
Sedláček Martin, Pavloušek Pavel, Lošák Tomáš, Zatloukalová Andrea, Filipčík Radek, Hlušek Jaroslav, Vítězová Monika (2013): The effect of arbuscular mycorrhizal fungi on the content of macro and micro elements in grapevine (Vitis vinifera, L.) leaves. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61, 187-191  https://doi.org/10.11118/actaun201361010187
 
Schreiber U., Bilge W., Neubauer C. (1994): Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E.D., Caldwell M.M. (eds): Ecophysiology of Photosynthesis. Berlin, Springer-Verlag, 49–70.
 
Simpson Meg, McLenaghen Roger D., Chirino-Valle Ivan, Condron Leo M. (2012): Effects of long-term grassland management on the chemical nature and bioavailability of soil phosphorus. Biology and Fertility of Soils, 48, 607-611  https://doi.org/10.1007/s00374-011-0661-2
 
Treseder Kathleen K. (2013): The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil, 371, 1-13  https://doi.org/10.1007/s11104-013-1681-5
 
Trouvelot A., Kough J.L., Gianinazzi-Pearson V. (1986): Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V., Gianinazzi S. (eds): Physiological and Genetical Aspects of Mycorrhizae. Paris, INRA, 217–221.
 
Yao Q., Wang L.R., Zhu H.H., Chen J.Z. (2009): Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Scientia Horticulturae, 121, 458-461  https://doi.org/10.1016/j.scienta.2009.03.013
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti