Comparison of energy inputs and energy efficiency for maize in a long-term tillage experiment under Pannonian climate conditions

Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. (2021): Comparison of energy inputs and energy efficiency for maize in a long-term tillage experiment under Pannonian climate conditions. Plant Soil Environ., 67: 299–306.


download PDF

Sustainable crop production requires an efficient usage of fossil energy. This six-year study on a silt loam soil (chernozem) analysed the energy efficiency of four tillage systems (mouldboard plough 25–30 cm, deep conservation tillage 35 cm, shallow conservation tillage 8–10 cm, no-tillage). Fuel consumption, total energy input (made up of both direct and indirect input), grain of maize yield, energy output, net-energy output, energy intensity and energy use efficiency were considered. The input rates of fertiliser, herbicides and seeds were set constant; measured values of fuel consumption were used for all tillage operations. Total fuel consumption for maize (Zea mays L.) production was 81.6, 81.5, 69.5 and 53.2 L/ha for the four tillage systems. Between 60% and 64% of the total energy input (17.0–17.4 GJ/ha) was indirect energy (seeds, fertiliser, herbicides, machinery). The share of fertiliser energy of the total energy input was 36% on average across all tillage treatments. Grain drying was the second highest energy consumer with about 22%. Grain yield and energy output were mainly determined by the year. The tillage effect on yield and energy efficiency was smaller than the growing year effect. Over all six years, maize produced in the no-tillage system reached the highest energy efficiency.


Arvidsson J. (2010): Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. European Journal of Agronomy, 33: 250–256.
Biedermann G. (2009): Kumulierter Energieaufwand (KEA) der Weizenproduktion bei verschiedenen Produktionssystemen (konventionell und ökologisch) und verschiedenen Bodenbearbeitungssystemen (Pflug, Mulchsaat, Direktsaat). [Master Thesis] Vienna, University of Natural Resources and Life Sciences.
Bunting E. (1972): Ripening of grain maize in England: varietal differences in ripening patterns. The Journal of Agricultural Science, 79: 235–244.
CIGR (1999): Handbook of Agricultural Engineering – Volume V: Energy and Biomass Engineering. St. Joseph, American Society of Agricultural and Biological Engineers. Available at: (accessed 15 March 2019)
Deike S., Pallutt B., Melander B., Strassemeyer J., Christen O. (2008): Long-term productivity and environmental effects of arable farming as affected by crop rotation, soil tillage intensity and strategy of pesticide use: a case study of two long-term field experiments in Germany and Denmark. European Journal of Agronomy, 29: 191–199.
DLG (1997): Futterwerttabellen Wiederkäuer. 7. Auflage. Frankfurt am Main, DLG-Verlags-GmbH.
Green M.B. (1987): Energy in pesticide manufacture, distribution and use. In: Helsel Z.R. (ed.): Energy in Plant Nutrition and Pest Control. Energy in World Agriculture, Vol. 2. Amsterdam, Elsevier, 165–195. ISBN-13: 978-0444427533
Hoeppner J.W., Entz M.H., McConkey B.G., Zentner R.P., Nagy C.N. (2005): Energy use and efficiency in two Canadian organic and conventional crop production systems. Renewable Agriculture and Food Systems, 21: 60–67.
Hülsbergen K.-J., Feil B., Biermann S., Rathke G.-W., Kalk W.-D., Diepenbrock W. (2001): A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture, Ecosystems and Environment, 86: 303–321.
Jenssen T.K., Kongshaug G. (2003): Energy consumption and greenhouse gas emissions in fertiliser production. In: Proceedings of the International Fertiliser Society, No. 509, London, International Fertiliser Society.
Lin H.-C., Huber J.A., Gerl G., Hülsbergen K.-J. (2017): Effects of changing farm management and farm structure on energy balance and energy-use efficiency – a case study of organic and conventional farming systems in southern Germany. European Journal of Agronomy, 82: 242–253.
McLaughlin N.B., Hiba A., Wall G.J., King D.J. (2000): Comparison of energy inputs for inorganic fertilizer and manure based corn production. Canadian Agricultural Engineering, 42: 2.1–2.14.
McLaughlin N.B., Drury C.F., Reynolds W.D., Yang X.M., Li Y.X., Welacky T.W., Stewart G. (2008): Energy inputs for conservation primary tillage implements in a clay loam soil. Transactions of the ASABE, 51: 1153–1663.
Moitzi G., Haas M., Wagentristl H., Boxberger J., Gronauer A. (2013): Energy consumption in cultivating and ploughing with traction improvement system and consideration of the rear furrow wheel-load in ploughing. Soil and Tillage Research, 134: 56–60.
Moitzi G., Wagentristl H., Refenner K., Weingartmann H., Piringer G., Boxberger J., Gronauer A. (2014): Effects of working depth and wheel slip on fuel consumption of selected tillage implements. Agricultural Engineering International: CIGR Journal, 16: 182–190.
Moitzi G., Thünauer G., Robier J., Gronauer A. (2015): Energieeinsatz und Energieeffizienz in der Körnermaisproduktion bei unterschiedlicher Stickstoffdüngung in der Südsteiermark. Die Bodenkultur. Journal for Land Management, Food and Environment, 66: 25–37.
Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. (2019): Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. European Journal of Agronomy, 103: 24–31.
Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. (2021): Effect of tillage systems on energy input and energy efficiency for sugar beet and soybean under Pannonian climate conditions. Plant, Soil and Environment, 67: 137–146.
ÖKL (2019): ÖKL-Richtwerte für die Maschinenselbstkosten 2019. Wien. Österreichisches Kuratorium für Landtechnik und Landentwicklung (ÖKL).
Pittelkow C.M., Liang X.Q., Linquist B.A., Van Groenigen K.J., Lee J., Lundy M.E., Van Gestelm N., Six J., Venterea R.T., Van Kessel C. (2015): Productivity limits and potentials of the principles of conservation agriculture. Nature, 517: 365–368.
Poje T. (1998): Energy used by the work of tractor equipped with implements for different soil tillage systems. In: Proceeding of the Conference Agricultural Engineering. VDI-Berichte 1449, VDI-Verlag, Düsseldorf, 105–110.
Rathke G.-W., Wienhold B.J., Wilhelm W.W., Diepenbrock W. (2007): Tillage and rotation effect on corn-soybean energy balances in eastern Nebraska. Soil and Tillage Research, 97: 60–70.
Saling P., Kölsch D. (2008): Ökobilanzierung: Energieverbräuche und CO2-Emissionen von Pflanzenschutzmitteln. In: Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), KTBL-Schrift 463, Energieeffiziente Landwirtschaft, Darmstadt, 65–71.
Šarauskis E., Buragiené S., Masilionyté L., Romaneckas K., Avižienyte D., Sakaluskas A. (2014): Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy, 69: 227–235.
Sartori L., Basso B., Bertocco M., Oliviero G. (2005): Energy use and economic evaluation of a three year crop rotation for conservation and organic farming in NE Italy. Biosystems Engineering, 91: 245–256.
Sørensen C.G., Halberg N., Oudshoorn F.W., Petersen B.M., Dalgaard R. (2014): Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120: 2–14.
Szalay T., Moitzi G., Weingartmann H., Liebhard P. (2015): Einfluss unterschiedlicher Bodenbearbeitungssysteme auf Kraftstoffverbrauch und Arbeitszeitbedarf für den Winterweizenanbau im semiariden Produktionsgebiet. Die Bodenkultur. Journal for Land Management, Food and Environment, 66: 39–48.
Thaler S., Eitzinger J., Trnka M., Dubrovský M. (2012): Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science, 150: 537–555.
Zentner R.P., Lafond G.P., Derksen D.A., Nagy C.N., Wall D.D., May W.E. (2004): Effects of tillage method and crop rotation on non-renewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies. Soil and Tillage Research, 77: 125–136.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti