Agarry S.E., Durojaiye A.O., Solomon B.O. (2008): Microbial degradation of phenols: a review. International Journal of Environment and Pollution, 32: 12–28.
https://doi.org/10.1504/IJEP.2008.016895
Badri D.V., Chaparro J.M., Zhang R.F., Shen Q.R., Vivanco J.M. (2013): Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. Journal of Biological Chemistry, 288: 4502–4512.
https://doi.org/10.1074/jbc.M112.433300
Bai Y.X., Wang G., Cheng Y.D., Shi P.Y., Yang C.C., Yang H.W., Xu Z.L. (2019): Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Scientific Reports, 9: 12499.
https://doi.org/10.1038/s41598-019-48611-5
Blum U., Shafer S.R., Lehman M.E. (1999): Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Critical Reviews in Plant Sciences, 18: 673–693.
https://doi.org/10.1080/07352689991309441
Blum U. (1998): Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. Journal of Chemical Ecology, 24: 685–708.
https://doi.org/10.1023/A:1022394203540
Chen L.H., Yang X.M., Raza W., Li J.H., Liu Y.X., Qiu M.H., Zhang F.G., Shen Q.R. (2011): Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Applied Microbiology and Biotechnology, 89: 1653–1663.
https://doi.org/10.1007/s00253-010-2948-x
Chen S.C., Yu H.J., Zhou X.G., Wu F.Z. (2018): Cucumber (Cucumis sativus L.) seedling rhizosphere Trichoderma and Fusarium spp. communities altered by vanillic acid. Frontiers in Microbiology, 9: 2195.
https://doi.org/10.3389/fmicb.2018.02195
Contreras-Cornejo H.A., Macías-Rodríguez L., del-Val E., Larsen J. (2016): Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92: fiw036.
Drigo B., van Veen J.A., Kowalchuk G.A. (2009): Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2. The ISME Journal, 3: 1204–1217.
https://doi.org/10.1038/ismej.2009.65
Eisenhauer N., Lanoue A., Strecker T., Scheu S., Steinauer K., Thakur M.P., Mommer L. (2017): Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7: 44641.
https://doi.org/10.1038/srep44641
Fierer N., Jackson R.B. (2006): The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103: 626–631.
https://doi.org/10.1073/pnas.0507535103
Friedman J. (2017): Allelopathy, autotoxicity, and germination. In: Kigel J. (ed.): Seed Development and Germination. New York, Routledge, 629–644. ISBN 9780203740071
Hagn A., Wallisch S., Radl V., Munch J.C., Schloter M. (2007): A new cultivation independent approach to detect and monitor common Trichoderma species in soils. Journal of Microbiological Methods, 69: 86–92.
https://doi.org/10.1016/j.mimet.2006.12.004
Hamid M.I., Hussain M., Wu Y.P., Zhang X.L., Xiang M.C., Liu X.Z. (2017): Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode. FEMS Microbiology Ecology, 93: fiw122.
https://doi.org/10.1093/femsec/fiw222
Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004): Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43–56.
https://doi.org/10.1038/nrmicro797
Hussain M., Hamid M.I., Tian J.Q., Hu J.Y., Zhang X.L., Chen J.S., Xiang M.C., Liu X.Z. (2018): Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes. FEMS Microbiology Ecology, 94: fiy142.
https://doi.org/10.1093/femsec/fiy142
Jia H.T., Liu J.Y., Shi Y.J., Li D.L., Wu F.Z., Zhou X.G. (2019): Characterization of cucumber rhizosphere bacterial community with high-throughput amplicon sequencing. Allelopathy Journal, 47: 103–112.
https://doi.org/10.26651/allelo.j/2019-47-1-1223
Jin X., Zhang J.H., Shi Y.J., Wu F.Z., Zhou X.G. (2019): Green manures of Indian mustard and wild rocket enhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial community composition. Plant and Soil, 441: 283–300.
https://doi.org/10.1007/s11104-019-04118-6
Jin X., Shi Y.J., Wu F.Z., Pan K., Zhou X.G. (2020a): Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusarium wilt disease. Scientia Agricola, 77: e20190005.
https://doi.org/10.1590/1678-992x-2019-0005
Jin X., Wu F.Z., Zhou X.G. (2020b): Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition. Biology and Fertility of Soils, 56: 125–136.
https://doi.org/10.1007/s00374-019-01408-0
Khashi u Rahman M., Zhou X.G., Wu F.Z. (2019): The role of root exudates, CMNs, and VOCs in plant-plant interaction. Journal of Plant Interactions, 14: 630–636.
https://doi.org/10.1080/17429145.2019.1689581
Komoń-Zelazowska M., Bissett J., Zafari D., Hatvani L., Manczinger L., Woo S., Lorito M., Kredics L., Kubicek C.P., Druzhinina I.S. (2007): Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Applied and Environmental Microbiology, 73: 7415–7426.
https://doi.org/10.1128/AEM.01059-07
Krastanov A., Alexieva Z., Yemendzhiev H. (2013): Microbial degradation of phenol and phenolic derivatives. Engineering in Life Sciences, 13: 76–87.
https://doi.org/10.1002/elsc.201100227
Li Z.H., Wang Q., Ruan X., Pan C.D., Jiang D.A. (2010): Phenolics and plant allelopathy. Molecules, 15: 8933–8952.
https://doi.org/10.3390/molecules15128933
Mandal S.M., Chakraborty D., Dey S. (2010): Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling and Behavior, 5: 359–368.
https://doi.org/10.4161/psb.5.4.10871
Meincke R., Weinert N., Radl V., Schloter M., Smalla K., Berg G. (2010): Development of a molecular approach to describe the composition of Trichoderma communities. Journal of Microbiological Methods, 80: 63–69.
https://doi.org/10.1016/j.mimet.2009.11.001
Olk D.C., Cassman K.G., Randall E.W., Kinchesh P., Sanger L.J., Anderson J.M. (1996): Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. European Journal of Soil Science, 47: 293–303.
https://doi.org/10.1111/j.1365-2389.1996.tb01403.x
Park M.S., Bae K.S., Yu S.H. (2006): Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology, 34: 111–113.
https://doi.org/10.4489/MYCO.2006.34.3.111
Qu X.H., Wang J.G. (2008): Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Applied Soil Ecology, 39: 172–179.
https://doi.org/10.1016/j.apsoil.2007.12.007
Sánchez-Maldonado A.F., Schieber A., Gänzle M.G. (2011): Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of Applied Microbiology, 111: 1176–1184.
https://doi.org/10.1111/j.1365-2672.2011.05141.x
Shalaby S., Horwitz B.A., Larkov O. (2012): Structure-activity relationships delineate how the maize pathogen Cochliobolus heterostrophus uses aromatic compounds as signals and metabolites. Molecular Plant-Microbe Interactions, 25: 931–940.
https://doi.org/10.1094/MPMI-01-12-0015-R
Singh H.P., Batish D.R., Kohli R.K. (1999): Autotoxicity: concept, organisms, and ecological significance. Critical Reviews in Plant Sciences, 18: 757–772.
https://doi.org/10.1080/07352689991309478
Tilak K.V.B.R., Ranganayaki N., Pal K.K., De R., Saxena A.K., Nautiyal C.S., Mittal S., Tripathi A.K., Johri B.N. (2005): Diversity of plant growth and soil health supporting bacteria. Current Science, 89: 136–150.
Torsvik V., Øvreås L. (2002): Microbial diversity and function in soil: from genes to ecosystems. Current Opinions in Microbiology, 5: 240–245.
https://doi.org/10.1016/S1369-5274(02)00324-7
Van Schie P.M., Young L.Y. (2000): Biodegradation of phenol: mechanisms and applications. Bioremediation Journal, 4: 1–18.
https://doi.org/10.1080/10588330008951128
Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. (2008): Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40: 1–10.
https://doi.org/10.1016/j.soilbio.2007.07.002
Wang Z.L., Zhang J.H., Wu F.Z., Zhou X.G. (2018): Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid. PloS ONE 13(6): e0200007.
https://doi.org/10.1371/journal.pone.0200007
Wu H., Wu L., Wang J., Zhu Q., Lin S., Xu J., Zheng C., Chen J., Qin X., Fanq C., Zhang Z., Azzem S., Lin W. (2016): Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil. Frontiers in Microbiology, 7: 335.
Ye S.F., Zhou Y.H., Sun Y., Zou L.Y., Yu J.Q. (2006): Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56: 255–262.
https://doi.org/10.1016/j.envexpbot.2005.02.010
Yu H.J., Chen S.C., Zhang X.X., Zhou X.G., Wu F.Z. (2019): Rhizosphere bacterial community in watermelon-wheat intercropping was more stable than in watermelon monoculture system under Fusarium
https://doi.org/10.1007/s11104-019-04321-5
oxysporum f. sp. niveum invasion. Plant and Soil, 445: 369–381.
Yu J.Q., Shou S.Y., Qian Y.R., Zhu J.Z., Hu W.H. (2000): Autotoxic potential of cucurbit crops. Plant and Soil, 223: 149–153.
https://doi.org/10.1023/A:1004829512147
Yu J.Q., Ye S.F., Zhang M.F., Hu W.H. (2003): Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochemical Systematics and Ecology, 31: 129–139.
https://doi.org/10.1016/S0305-1978(02)00150-3
Zhang X.H., Lang D.Y., Zhang E.H. (2016): Effects of soil sterilization on growth of Angelica sinensis plant and soil microbial populations in a continuous mono-cropping soil. International Journal of Agriculture and Biology, 18: 458–463.
https://doi.org/10.17957/IJAB/15.0118
Zhou X.G., Liu J., Wu F.Z. (2017): Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 415: 507–520.
https://doi.org/10.1007/s11104-017-3181-5
Zhou X.G., Wang J., Jin X., Li D.L., Shi Y.J., Wu F.Z. (2019): Effects of selected cucumber root exudates components on soil Trichoderma spp. communities. Allelopathy Journal, 47: 257–266.
https://doi.org/10.26651/allelo.j/2019-47-2-1236
Zhou X., Wu F. (2018): Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities. Scientific Reports, 8: 4929.
https://doi.org/10.1038/s41598-018-23406-2
Zhou X.G., Zhang J.H., Pan D.D., Ge X., Jin X., Chen S., Wu F. (2018): p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biology and Fertility of Soils, 54: 363–372.
https://doi.org/10.1007/s00374-018-1265-x