Exogenously applied ferulic acid and p-coumaric acid differentially affect cucumber rhizosphere Trichoderma spp. community structure and abundance


Khashi U Rahman M., Tan S.C., Ma C.L., Wu F.Z., Zhou X.G. (2020): Exogenously applied ferulic acid and p-coumaric acid differentially affect cucumber rhizosphere Trichoderma spp. community structure and abundance. Plant Soil Environ., 66: 461–467.


download PDF

Continuous monocropping can cause the buildup of autotoxins (e.g., phenolic compounds) in the soil, which can alter soil microbial community and inhibit plant growth. However, how different phenolic compounds affect certain soil microbiota is unclear. Here, we studied the response of cucumber rhizosphere Trichoderma spp. community to exogenously applied ferulic and p-coumaric acids by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR techniques. Results showed that ferulic acid, but not p-coumaric acid, increased the Trichoderma spp. abundance, and this increase were positively correlated with ferulic acid concentration. Moreover, ferulic acid changed the community structure, increased the number of DGGE bands, Shannon wiener, and evenness index values, while p-coumaric acid had no effect on all these parameters of Trichoderma spp. community. These results suggest that these two phenolic acids affected Trichoderma spp. differentially at the community level.

Agarry S.E., Durojaiye A.O., Solomon B.O. (2008): Microbial degradation of phenols: a review. International Journal of Environment and Pollution, 32: 12–28. https://doi.org/10.1504/IJEP.2008.016895
Badri D.V., Chaparro J.M., Zhang R.F., Shen Q.R., Vivanco J.M. (2013): Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. Journal of Biological Chemistry, 288: 4502–4512. https://doi.org/10.1074/jbc.M112.433300
Bai Y.X., Wang G., Cheng Y.D., Shi P.Y., Yang C.C., Yang H.W., Xu Z.L. (2019): Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Scientific Reports, 9: 12499. https://doi.org/10.1038/s41598-019-48611-5
Blum U., Shafer S.R., Lehman M.E. (1999): Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Critical Reviews in Plant Sciences, 18: 673–693. https://doi.org/10.1080/07352689991309441
Blum U. (1998): Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. Journal of Chemical Ecology, 24: 685–708. https://doi.org/10.1023/A:1022394203540
Chen L.H., Yang X.M., Raza W., Li J.H., Liu Y.X., Qiu M.H., Zhang F.G., Shen Q.R. (2011): Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Applied Microbiology and Biotechnology, 89: 1653–1663. https://doi.org/10.1007/s00253-010-2948-x
Chen S.C., Yu H.J., Zhou X.G., Wu F.Z. (2018): Cucumber (Cucumis sativus L.) seedling rhizosphere Trichoderma and Fusarium spp. communities altered by vanillic acid. Frontiers in Microbiology, 9: 2195. https://doi.org/10.3389/fmicb.2018.02195
Contreras-Cornejo H.A., Macías-Rodríguez L., del-Val E., Larsen J. (2016): Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92: fiw036.
Drigo B., van Veen J.A., Kowalchuk G.A. (2009): Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2. The ISME Journal, 3: 1204–1217. https://doi.org/10.1038/ismej.2009.65
Eisenhauer N., Lanoue A., Strecker T., Scheu S., Steinauer K., Thakur M.P., Mommer L. (2017): Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7: 44641. https://doi.org/10.1038/srep44641
Fierer N., Jackson R.B. (2006): The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103: 626–631. https://doi.org/10.1073/pnas.0507535103
Friedman J. (2017): Allelopathy, autotoxicity, and germination. In: Kigel J. (ed.): Seed Development and Germination. New York, Routledge, 629–644. ISBN 9780203740071
Hagn A., Wallisch S., Radl V., Munch J.C., Schloter M. (2007): A new cultivation independent approach to detect and monitor common Trichoderma species in soils. Journal of Microbiological Methods, 69: 86–92. https://doi.org/10.1016/j.mimet.2006.12.004
Hamid M.I., Hussain M., Wu Y.P., Zhang X.L., Xiang M.C., Liu X.Z. (2017): Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode. FEMS Microbiology Ecology, 93: fiw122. https://doi.org/10.1093/femsec/fiw222
Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004): Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43–56. https://doi.org/10.1038/nrmicro797
Hussain M., Hamid M.I., Tian J.Q., Hu J.Y., Zhang X.L., Chen J.S., Xiang M.C., Liu X.Z. (2018): Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes. FEMS Microbiology Ecology, 94: fiy142. https://doi.org/10.1093/femsec/fiy142
Jia H.T., Liu J.Y., Shi Y.J., Li D.L., Wu F.Z., Zhou X.G. (2019): Characterization of cucumber rhizosphere bacterial community with high-throughput amplicon sequencing. Allelopathy Journal, 47: 103–112. https://doi.org/10.26651/allelo.j/2019-47-1-1223
Jin X., Zhang J.H., Shi Y.J., Wu F.Z., Zhou X.G. (2019): Green manures of Indian mustard and wild rocket enhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial community composition. Plant and Soil, 441: 283–300. https://doi.org/10.1007/s11104-019-04118-6
Jin X., Shi Y.J., Wu F.Z., Pan K., Zhou X.G. (2020a): Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusarium wilt disease. Scientia Agricola, 77: e20190005. https://doi.org/10.1590/1678-992x-2019-0005
Jin X., Wu F.Z., Zhou X.G. (2020b): Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition. Biology and Fertility of Soils, 56: 125–136. https://doi.org/10.1007/s00374-019-01408-0
Khashi u Rahman M., Zhou X.G., Wu F.Z. (2019): The role of root exudates, CMNs, and VOCs in plant-plant interaction. Journal of Plant Interactions, 14: 630–636. https://doi.org/10.1080/17429145.2019.1689581
Komoń-Zelazowska M., Bissett J., Zafari D., Hatvani L., Manczinger L., Woo S., Lorito M., Kredics L., Kubicek C.P., Druzhinina I.S. (2007): Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Applied and Environmental Microbiology, 73: 7415–7426. https://doi.org/10.1128/AEM.01059-07
Krastanov A., Alexieva Z., Yemendzhiev H. (2013): Microbial degradation of phenol and phenolic derivatives. Engineering in Life Sciences, 13: 76–87. https://doi.org/10.1002/elsc.201100227
Li Z.H., Wang Q., Ruan X., Pan C.D., Jiang D.A. (2010): Phenolics and plant allelopathy. Molecules, 15: 8933–8952. https://doi.org/10.3390/molecules15128933
Mandal S.M., Chakraborty D., Dey S. (2010): Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling and Behavior, 5: 359–368. https://doi.org/10.4161/psb.5.4.10871
Meincke R., Weinert N., Radl V., Schloter M., Smalla K., Berg G. (2010): Development of a molecular approach to describe the composition of Trichoderma communities. Journal of Microbiological Methods, 80: 63–69. https://doi.org/10.1016/j.mimet.2009.11.001
Olk D.C., Cassman K.G., Randall E.W., Kinchesh P., Sanger L.J., Anderson J.M. (1996): Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. European Journal of Soil Science, 47: 293–303. https://doi.org/10.1111/j.1365-2389.1996.tb01403.x
Park M.S., Bae K.S., Yu S.H. (2006): Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology, 34: 111–113. https://doi.org/10.4489/MYCO.2006.34.3.111
Qu X.H., Wang J.G. (2008): Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Applied Soil Ecology, 39: 172–179. https://doi.org/10.1016/j.apsoil.2007.12.007
Sánchez-Maldonado A.F., Schieber A., Gänzle M.G. (2011): Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of Applied Microbiology, 111: 1176–1184. https://doi.org/10.1111/j.1365-2672.2011.05141.x
Shalaby S., Horwitz B.A., Larkov O. (2012): Structure-activity relationships delineate how the maize pathogen Cochliobolus heterostrophus uses aromatic compounds as signals and metabolites. Molecular Plant-Microbe Interactions, 25: 931–940. https://doi.org/10.1094/MPMI-01-12-0015-R
Singh H.P., Batish D.R., Kohli R.K. (1999): Autotoxicity: concept, organisms, and ecological significance. Critical Reviews in Plant Sciences, 18: 757–772. https://doi.org/10.1080/07352689991309478
Tilak K.V.B.R., Ranganayaki N., Pal K.K., De R., Saxena A.K., Nautiyal C.S., Mittal S., Tripathi A.K., Johri B.N. (2005): Diversity of plant growth and soil health supporting bacteria. Current Science, 89: 136–150.
Torsvik V., Øvreås L. (2002): Microbial diversity and function in soil: from genes to ecosystems. Current Opinions in Microbiology, 5: 240–245. https://doi.org/10.1016/S1369-5274(02)00324-7
Van Schie P.M., Young L.Y. (2000): Biodegradation of phenol: mechanisms and applications. Bioremediation Journal, 4: 1–18. https://doi.org/10.1080/10588330008951128
Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. (2008): Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40: 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
Wang Z.L., Zhang J.H., Wu F.Z., Zhou X.G. (2018): Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid. PloS ONE 13(6): e0200007. https://doi.org/10.1371/journal.pone.0200007
Wu H., Wu L., Wang J., Zhu Q., Lin S., Xu J., Zheng C., Chen J., Qin X., Fanq C., Zhang Z., Azzem S., Lin W. (2016): Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil. Frontiers in Microbiology, 7: 335.
Ye S.F., Zhou Y.H., Sun Y., Zou L.Y., Yu J.Q. (2006): Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56: 255–262. https://doi.org/10.1016/j.envexpbot.2005.02.010
Yu H.J., Chen S.C., Zhang X.X., Zhou X.G., Wu F.Z. (2019): Rhizosphere bacterial community in watermelon-wheat intercropping was more stable than in watermelon monoculture system under Fusarium https://doi.org/10.1007/s11104-019-04321-5
oxysporum f. sp. niveum invasion. Plant and Soil, 445: 369–381.
Yu J.Q., Shou S.Y., Qian Y.R., Zhu J.Z., Hu W.H. (2000): Autotoxic potential of cucurbit crops. Plant and Soil, 223: 149–153. https://doi.org/10.1023/A:1004829512147
Yu J.Q., Ye S.F., Zhang M.F., Hu W.H. (2003): Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochemical Systematics and Ecology, 31: 129–139. https://doi.org/10.1016/S0305-1978(02)00150-3
Zhang X.H., Lang D.Y., Zhang E.H. (2016): Effects of soil sterilization on growth of Angelica sinensis plant and soil microbial populations in a continuous mono-cropping soil. International Journal of Agriculture and Biology, 18: 458–463. https://doi.org/10.17957/IJAB/15.0118
Zhou X.G., Liu J., Wu F.Z. (2017): Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 415: 507–520. https://doi.org/10.1007/s11104-017-3181-5
Zhou X.G., Wang J., Jin X., Li D.L., Shi Y.J., Wu F.Z. (2019): Effects of selected cucumber root exudates components on soil Trichoderma spp. communities. Allelopathy Journal, 47: 257–266. https://doi.org/10.26651/allelo.j/2019-47-2-1236
Zhou X., Wu F. (2018): Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities. Scientific Reports, 8: 4929. https://doi.org/10.1038/s41598-018-23406-2
Zhou X.G., Zhang J.H., Pan D.D., Ge X., Jin X., Chen S., Wu F. (2018): p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biology and Fertility of Soils, 54: 363–372. https://doi.org/10.1007/s00374-018-1265-x
download PDF

© 2020 Czech Academy of Agricultural Sciences