Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central Europe

https://doi.org/10.17221/70/2018-PSECitation:Zehetner F., Wuenscher R., Peticzka R., Unterfrauner H. (2018): Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central Europe. Plant Soil Environ., 64: 192-201.
download PDF

The aim of this study was to test different soil phosphorus (P) extraction methods in relation to plant P uptake. A greenhouse pot experiment was conducted with spring wheat. The soils were extracted with the following methods/extractants: H2O, CaCl2, LiCl, iron oxide impregnated filter papers (Fe-oxide Pi), Olsen, calcium-acetate-lactate (CAL), cation and anion exchange membranes (CAEM), Mehlich 3, Bray and Kurtz II (Bray II), citrate-bicarbonate-dithionite, organic P, HCl, acid ammonium oxalate, total P. Plant P uptake was in the range of the P extracted by neutral salt solutions (CaCl2, LiCl). P extracted with H2O, CaCl2 and CAEM correlated best with plant P uptake over one growing season, while several established soil P test methods, including CAL, Mehlich 3 and Bray II, did not show significant correlations. When grouping the soils according to pH, the weaker extraction methods (H2O, CaCl2, LiCl) showed significant correlations with plant P uptake only for the low and intermediate pH groups (pH in 1 mol/L KCl ≤ 6.6), while some of the stronger extraction methods (CAL, Mehlich 3, Bray II, dithionite, oxalate, total P) showed significant correlations only for the high pH group (> 6.6) comprised of calcareous soils. It was concluded that weaker P extraction methods, especially neutral salt solutions best predict plant-available P in the short term. However, they do not perform well for calcareous (and clayey) soils and do not account for P that may become available beyond one growing season.

References:
Beckett P. H. T., White R. E. (1964): Studies on the phosphate potentials of soils. Plant and Soil, 21, 253-282  https://doi.org/10.1007/BF01377744
 
Bissani C. A., Tedesco M. J., Camargo F. A. de O., Miola G. L., Gianello C. (2006): Anion-exchange resins and iron oxide-impregnated filter paper as plant available phosphorus indicators in soils. Communications in Soil Science and Plant Analysis, 33, 1119-1130  https://doi.org/10.1081/CSS-120003876
 
Blum W.E.H., Spiegel H., Wenzel W.W. (1996): Bodenzustandsinventur – Konzeption, Durchführung und Bewertung. Empfehlung zur Vereinheitlichung der Vorgangsweise in Österreich. 2nd Edition. Vienna, Bundesministerium f. Land- und Forstwirtschaft.
 
Blume H.-P., Brümmer G.W., Horn R., Kandeler E., Kögel-Knabner I., Kretzschmar R., Stahr K., Wilke B.-M. (2010): Scheffer/Schachtschabel Lehrbuch der Bodenkunde. 16th Edition. Heidelberg, Spektrum Akademischer Verlag.
 
Condron L.M., Tiessen H. (2005): Interactions of organic phosphorus in terrestrial ecosystems. In: Turner B.L., Frossard E., Baldwin D.S. (eds.): Organic Phosphorus in the Environment. Wallington, CAB International, 295–307.
 
Cordell Dana, Drangert Jan-Olof, White Stuart (2009): The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19, 292-305  https://doi.org/10.1016/j.gloenvcha.2008.10.009
 
Diepenbrock W., Fischbeck G., Heyland K.-U., Knauer N. (1999): Spezieller Pflanzenbau. 2nd Edition. Stuttgart, Eugen Ulmer GmbH & Co.
 
Emsley J. (2001): Phosphor – Ein Element auf Leben und Tod. Weinheim, Wiley VCH.
 
Hinsinger Philippe, Plassard Claude, Tang Caixian, Jaillard Benoît (2003): Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248, 43-59  https://doi.org/10.1023/A:1022371130939
 
Kulhánek M., Balík J., Černý J., Kozlovský O., Nedvěd V. (2009): The content of available phosphorus in soils and P uptake by plants. Scientia Agriculturae Bohemica, 40: 105–109.
 
Kuo S. (1996): Phosphorus. In: Bartels J.M., Bigham J.M. (eds): Methods of Soil Analysis, 3. Chemical Methods. Madison, Soil Science Society of America, 869–919.
 
Liu Yi, Villalba Gara, Ayres Robert U., Schroder Hans (2008): Global Phosphorus Flows and Environmental Impacts from a Consumption Perspective. Journal of Industrial Ecology, 12, 229-247  https://doi.org/10.1111/j.1530-9290.2008.00025.x
 
Mallarino Antonio P., Atia Atta M. (2005): Correlation of a Resin Membrane Soil Phosphorus Test with Corn Yield and Routine Soil Tests. Soil Science Society of America Journal, 69, 266-  https://doi.org/10.2136/sssaj2005.0266
 
Mehlich A. (2008): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416  https://doi.org/10.1080/00103628409367568
 
Menon R.G., Hammond L.L., Sissingh H.A. (1988): Determina-
 
tion of plant-available phosphorus by the iron hydroxide-impregnated filter paper (Pi) soil test. Soil Science Society of America Journal, 52: 110–115.
 
Mundus Simon, Carstensen Andreas, Husted Søren (2017): Predicting phosphorus availability to spring barley ( Hordeum vulgare ) in agricultural soils of Scandinavia. Field Crops Research, 212, 1-10  https://doi.org/10.1016/j.fcr.2017.06.026
 
Murphy J., Riley J.P. (1962): A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36  https://doi.org/10.1016/S0003-2670(00)88444-5
 
Nawara S., Van Dael T., Merckx R., Amery F., Elsen A., Odeurs W., Vandendriessche H., Mcgrath S., Roisin C., Jouany C., Pellerin S., Denoroy P., Eichler-Löbermann B., Börjesson G., Goos P., Akkermans W., Smolders E. (2017): A comparison of soil tests for available phosphorus in long-term field experiments in Europe. European Journal of Soil Science, 68, 873-885  https://doi.org/10.1111/ejss.12486
 
Poorter Hendrik, Bühler Jonas, van Dusschoten Dagmar, Climent José, Postma Johannes A. (2012): Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 39, 839-  https://doi.org/10.1071/FP12049
 
Saggar S., Hedley M.J., White R.E., Perrott K.W., Gregg P.E.H., Cornforth I.S., Sinclair A.G. (1999): Development and evaluation of an improved soil test for phosphorus, 3: Field comparison of Olsen, Colwell and Resin soil P tests for New Zealand pasture soils. Nutrient Cycling in Agroecosystems, 55: 35–50. https://doi.org/10.1023/A:1009868032532
 
Schachtman Daniel P., Reid Robert J., Ayling S.M. (1998): Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiology, 116, 447-453  https://doi.org/10.1104/pp.116.2.447
 
Schüller H. (1969): Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 123, 48-63  https://doi.org/10.1002/jpln.19691230106
 
Shirvani Mehran, Shariatmadari Hosein, Kalbasi Mahmoud (2005): Phosphorus Buffering Capacity Indices as Related to Soil Properties and Plant Uptake. Journal of Plant Nutrition, 28, 537-550  https://doi.org/10.1081/PLN-200049235
 
Smil Vaclav (2000): P HOSPHORUS IN THE E NVIRONMENT : Natural Flows and Human Interferences. Annual Review of Energy and the Environment, 25, 53-88  https://doi.org/10.1146/annurev.energy.25.1.53
 
Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. (2016): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61, 86-96  https://doi.org/10.17221/932/2014-PSE
 
Zheng Z.M., Zhang T.Q. (2012): Soil phosphorus tests and transformation analysis to quantify plant availability: A review. In: Whalen J. (ed.): Soil Fertility Improvement and Integrated Nutrient Management – A Global Perspective. Rijeka, InTech, 19–36.
 
Zorn Wilfried, Krause Ortwin (1999): Untersuchungen zur Charakterisierung des pflanzenverfügbaren Phosphats in Thüringer Carbonatböden. Journal of Plant Nutrition and Soil Science, 162, 463-469  https://doi.org/10.1002/(SICI)1522-2624(199910)162:5<463::AID-JPLN463>3.0.CO;2-3
 
download PDF

© 2019 Czech Academy of Agricultural Sciences