Utilization of exogenous saccharides by protocorms of two terrestrial orchids

https://doi.org/10.17221/71/2017-PSECitation:Ponert J., Lipavská H. (2017): Utilization of exogenous saccharides by protocorms of two terrestrial orchids. Plant Soil Environ., 63: 152-158.
download PDF
Orchid protocorms are completely mycoheterotrophic structures. Although saccharides are proposed as the main energy and carbon (C) sources provided by fungi, there is only limited knowledge on their effects. For the first time, utilization of a wide range of saccharides by in vitro axenic protocorms of two terrestrial orchids from two subfamilies, Ophrys iricolor subsp. lojaconoi and Oeceoclades, was tested. Protocorm size and, in the first of these also rhizoid length and soluble saccharide contents, were analysed. The endogenous saccharide spectra reflected the supplied saccharides and their metabolism. In both species, sucrose supported protocorm growth best. Surprisingly, fructose inhibited O. iricolor subsp. lojaconoi protocorm growth while O. decaryana ones grew well on it. Interestingly, mannitol abundant in mycorrhizal fungi was not utilized while sorbitol not found in fungi was usable. Galactose was toxic at pre-germination stage. Protocorm rhizoid length correlated with protocorm size but revealed several signalling effects of some saccharides. In conclusion, the orchid’s ability to utilize various saccharides reflects more likely species life strategy rather than phylogenetic relations or saccharide abundance in mycorrhizal fungi.
References:
Arditti Joseph (1967): Factors affecting the germination of orchid seeds. The Botanical Review, 33, 1-97  https://doi.org/10.1007/BF02858656
 
ARDITTI JOSEPH, GHANI ABDUL KARIM ABDUL (2000): Tansley Review No. 110.. New Phytologist, 145, 367-421  https://doi.org/10.1046/j.1469-8137.2000.00587.x
 
Bieleski R.L. (1982): Sugar alcohols. In: Loewus F.A., Tanner W. (eds): Encyclopedia of Plant Physiology. New York, Springer-Verlag, 158–192.
 
Bouriquet G. (1947): Sur la germination des graines de Vanillier (Vanilla planifolia And.). Agronomia Tropical, 2: 150–164.
 
Burgeff H. (1936): Samenkeimung der Orchideen und Entwicklung ihrer Keimpflanzen. Jena, Verlag von Gustav Fischer.
 
Cameron Duncan D., Johnson Irene, Read David J., Leake Jonathan R. (2008): Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytologist, 180, 176-184  https://doi.org/10.1111/j.1469-8137.2008.02533.x
 
Cheung Siu Po, Cleland Robert E. (1991): Galactose Inhibits Auxin-Induced Growth of Avena Coleoptiles by Two Mechanisms. Plant and Cell Physiology, 32, 1015-1019  https://doi.org/10.1093/oxfordjournals.pcp.a078164
 
Doidy Joan, Grace Emily, Kühn Christina, Simon-Plas Françoise, Casieri Leonardo, Wipf Daniel (2012): Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science, 17, 413-422  https://doi.org/10.1016/j.tplants.2012.03.009
 
Ernst Robert, Arditti Joseph, Healey Patrick L. (1971): Carbohydrate Physiology of Orchid Seedlings. II. Hydrolysis and Effects of Oligosaccharides. American Journal of Botany, 58, 827-  https://doi.org/10.2307/2441560
 
Ernst R. (1967): Effect of carbohydrate selection on the growth rate of freshly germinated Phalaenopsis and Dendrobium seed. American Orchid Society Bulletin, 36: 1068–1073.
 
Gutiérrez R.M.P. (2010): Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. Journal of Medicinal Plants Research, 4: 592–638.
 
HADLEY G. (1984): UPTAKE OF [14C]GLUCOSE BY ASYMBIOTIC AND MYCORRHIZAL ORCHID PROTOCORMS. New Phytologist, 96, 263-273  https://doi.org/10.1111/j.1469-8137.1984.tb03563.x
 
Johnson Timothy R., Kane Michael E. (2013): DIFFERENTIAL GERMINATION AND DEVELOPMENTAL RESPONSES OF BLETIA PURPUREA (ORCHIDACEAE) TO MANNITOL AND SORBITOL IN THE PRESENCE OF SUCROSE AND FRUCTOSE. Journal of Plant Nutrition, 36, 702-716  https://doi.org/10.1080/01904167.2012.748798
 
Knudson Lewis (1924): Further Observations on Nonsymbiotic Germination of Orchid Seeds. Botanical Gazette, 77, 212-  https://doi.org/10.1086/333300
 
Kubeš Martin, Drážná Nikola, Konrádová Hana, Lipavská Helena (2014): Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply. In Vitro Cellular & Developmental Biology - Plant, 50, 45-57  https://doi.org/10.1007/s11627-013-9589-6
 
Loescher W. H., Tyson R. H., Everard J. D., Redgwell R. J., Bieleski R. L. (1992): Mannitol Synthesis in Higher Plants : Evidence for the Role and Characterization of a NADPH-Dependent Mannose 6-Phosphate Reductase. PLANT PHYSIOLOGY, 98, 1396-1402  https://doi.org/10.1104/pp.98.4.1396
 
NAKAMURA SHIN JCHI (1982): NUTRITIONAL CONDITIONS REQUIRED FOR THE NON-SYMBIOTIC CULTURE OF AN ACHLOROPHYLLOUS ORCHID GALEOLA SEP TEN TRIO N ALIS. New Phytologist, 90, 701-715  https://doi.org/10.1111/j.1469-8137.1982.tb03279.x
 
Nehls U. (2008): Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. Journal of Experimental Botany, 59, 1097-1108  https://doi.org/10.1093/jxb/erm334
 
Patel Takshay K., Williamson John D. (2016): Mannitol in Plants, Fungi, and Plant–Fungal Interactions. Trends in Plant Science, 21, 486-497  https://doi.org/10.1016/j.tplants.2016.01.006
 
Ponert Jan, Figura Tomáš, Vosolsobě Stanislav, Lipavská Helena, Vohník Martin, Jersáková Jana (2013): Asymbiotic germination of mature seeds and protocorm development of Pseudorchis albida (Orchidaceae) are inhibited by nitrates even at extremely low concentrations. Botany, 91, 662-670  https://doi.org/10.1139/cjb-2013-0082
 
Ponert J., Vosolsobě S., Kmecová K., Lipavská H. (2011): European orchid cultivation – From seed to mature plant. European Journal of Environmental Sciences, 1: 95–107.
 
Quednow K.G. (1930): Beiträge zur Frage der Aufnahme gelöster Kohlenstoffverbindungen durch Orchideen und andere Pflanzen. Botanisches Archiv, 30: 51–108.
 
R Core Team (2014): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at http://www.R-project.org/ (accessed 11 November 2014)
 
. Abu Reza Md. Mahfuzur Rahman, . M. Obaidul Islam, . A.K.M. Azad-ud-doula Prodhan, . Syoichi Ichihashi (2005): Effects of Carbohydrates on Callus Growth and Callus Derived Plantlet Regeneration in Doritaenopsis Orchid. Biotechnology(Faisalabad), 4, 126-131  https://doi.org/10.3923/biotech.2005.126.131
 
Schneider Caroline A, Rasband Wayne S, Eliceiri Kevin W (2012): NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675  https://doi.org/10.1038/nmeth.2089
 
Sengupta Sonali, Mukherjee Sritama, Basak Papri, Majumder Arun L. (2015): Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Frontiers in Plant Science, 6, -  https://doi.org/10.3389/fpls.2015.00656
 
Shrestha B. R., Tokuhara K., Mii M. (2007): Plant regeneration from cell suspension-derived protoplasts of Phalaenopsis. Plant Cell Reports, 26, 719-725  https://doi.org/10.1007/s00299-006-0286-3
 
Smeekens Sjef, Hellmann Hanjo A. (2014): Sugar sensing and signaling in plants. Frontiers in Plant Science, 5, -  https://doi.org/10.3389/fpls.2014.00113
 
SMITH SARAH E. (1967): CARBOHYDRATE TRANSLOCATION IN ORCHID MYCORRHIZAS. New Phytologist, 66, 371-378  https://doi.org/10.1111/j.1469-8137.1967.tb06016.x
 
Sopalun Kathawut, Thammasiri Kanchit, Ishikawa Keiko (2010): Micropropagation of the Thai orchid Grammatophyllum speciosum blume. Plant Cell, Tissue and Organ Culture (PCTOC), 101, 143-150  https://doi.org/10.1007/s11240-010-9671-2
 
Stewart Scott L., Kane Michael E. (2010): EFFECTS OF CARBOHYDRATE SOURCE ON THE IN VITRO ASYMBIOTIC SEED GERMINATION OF THE TERRESTRIAL ORCHID HABENARIA MACROCERATITIS. Journal of Plant Nutrition, 33, 1155-1165  https://doi.org/10.1080/01904161003763757
 
Talbot N.J. (2010): Living the sweet life: How does a plant pathogenic fungus acquire sugar from plants? PLOS Biology, 8: e1000308.
 
Vojtíšková Lenka, Munzarová Edita, Votrubová Olga, Čížková Hana, Lipavská Helena (2006): The Influence of Nitrogen Nutrition on the Carbohydrate and Nitrogen Status of Emergent Macrophyte Acorus calamus L.. Hydrobiologia, 563, 73-85  https://doi.org/10.1007/s10750-005-0929-3
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti