Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity and phosphorus mobility in the rhizosphere
Tatiana Arkhipova, Nailya Galimsyanova, Ludmila Kuzmina, Lidiya Vysotskaya, Ludmila Sidorova, Ilusa Gabbasova, Alexander Melentiev, Guzel Kudoyarova
https://doi.org/10.17221/752/2018-PSECitation:Arkhipova T., Galimsyanova N., Kuzmina L., Vysotskaya L., Sidorova L., Gabbasova I., Melentiev A., Kudoyarova G. (2019): Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity and phosphorus mobility in the rhizosphere. Plant Soil Environ., 65: 313-319.Bacterization of the seeds of spring durum wheat with the strains of gram-positive aerobic spore-forming bacteria Bacillus subtilis IB-21 and B. subtilis IB-22 and gram-negative bacteria Advenella kashmirensis IB-К1and Pseudomonas extremaustralis IB-К13-1А was performed to study its effect on the productivity of plants, their hormonal content and rhizosphere phosphorus (P) status in the field experiments. A. kashmirensis IB-К1 andP. extremaustralis IB-К13-1А were the most capable of mobilizing hardly soluble phosphates in vitro, while P. extremaustralis IB-К13-1А produced the greatest concentration of auxins. All the studied strains successfully colonized the plant root system, the level of colonization detected during the second leaf stage being the highest in the case of A. kashmirensis IB-К1 and B. subtilis IB-22. Seed treatment with all the tested bacterial species resulted in an increase in phosphate mobility in the rhizosphere. Auxin content in wheat roots was increased by bacterization of seeds with P. extremaustralis IB-К13-1 and B. subtilis IB-22. The maximum increase in components of wheat crop yield (the mass of grains in the main and axillary spikes) was detected during 3 vegetative periods (2016, 2017 and 2018) in the case of seed treatment with the strains inducing a significant increase in auxin content in the roots of the treated plants related to either the highest bacterial capacity of producing this hormone in vitro (in the case of P. extremaustralis IB-К13-1А) or root colonization (in the case of B. subtilis IB-22).
spring wheat; plant hormones; phosphate-mobilizing bacteria; soil phosphate mobility
References:
Impact factor (Web of Science):
2021: 2.328
Q2 – Agronomy
5-Year Impact Factor: 2.197
SCImago Journal Rank (SCOPUS):
New Issue Alert
Join the journal on Facebook!
Ask for email notification.
Similarity Check
All the submitted manuscripts are checked by the CrossRef Similarity Check.
Abstracts are comprised in the databases
AGRICOLA
Agrindex of AGRIS/FAO databáze
AGRIS International
CAB Abstracts
CNKI
CrossRef
Current Contents®/Agriculture, Biology and Environmental Sciences
Czech Agricultural and Food Bibliography
DOAJ (Directory of Open Access Journals)
EBSCO – Academic Search Ultimate
Food Science and Technology Abstracts
Google Scholar
ISI Web of KnowledgeSM
J-GATE
Science Citation Index Expanded®
SCOPUS
TOXLINE Plus
Web of Science® (Core Collection)
Licence terms
All content is made freely available for non-commercial purposes, users are allowed to copy and redistribute the material, transform, and build upon the material as long as they cite the source.
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Contact
Mgr. Kateřina Součková
Executive Editor
e-mail: pse
Address
Plant, Soil and Environment
Czech Academy of Agricultural Sciences
Slezská 7, 120 00 Praha 2,
Czech Republic