The article describes the use of the recently commercially available technique of microwave induced plasma optical emission spectrometry with plasma gas (nitrogen) generation for the determination of calcium, magnesium, phosphorus and potassium in Mehlich 3 extracts. The specifics of the analysis of the agricultural samples for soil fertility assessment mean there are often a great number of samples to analyse in laboratory (the daily throughput of 500 or more samples). The analytical procedures were adapted to special requirements by the use of the new multielemental instrumental techniques. The detection limits were 0.43; 0.86; 0.20 and 0.06 mg/L; the precision for real sample analysis: 4.6; 1.0; 1.8 and 1.0%; the mean accuracy 97; 92; 107 and 100% for P, Ca, Mg and K, respectively, the real throughput reached 100 samples per hour.
Alva A. K. (1993): Comparison of mehlich 3, mehlich 1, ammonium bicarbonate‐DTPA, 1.0M ammonium acetate, and 0.2M ammonium chloride for extraction of calcium, magnesium, phosphorus, and potassium for a wide range of soils
1. Communications in Soil Science and Plant Analysis, 24, 603-612
https://doi.org/10.1080/00103629309368826
Arai Yuuki, Sato Shigeo, Wagatsuma Kazuaki (2013): Emission Spectrometric Analysis Using an Okamoto-cavity Microwave-induced Plasma with Nitrogen-Oxygen Mixed Gas. ISIJ International, 53, 1993-1999
https://doi.org/10.2355/isijinternational.53.1993
Arnold Eric, Pray Alfred (1943): Colorimetric Method for Determination of Sodium. Industrial & Engineering Chemistry Analytical Edition, 15, 294-296
https://doi.org/10.1021/i560116a029
David D. J. (1960): The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry. The Analyst, 85, 495-
https://doi.org/10.1039/an9608500495
Jankowski K (): Direct determination of trace amounts of sodium in water-soluble organic pharmaceuticals by microwave induced plasma atomic emission spectrometry. Talanta, 54, 855-862
https://doi.org/10.1016/S0039-9140(01)00333-2
Jankowski K. (2001): Microwave induced plasma emission spectrometry for environmental analysis: A review. Chemia Analityczna, 46: 305–327.
Mader P. (): Soil Fertility and Biodiversity in Organic Farming. Science, 296, 1694-1697
https://doi.org/10.1126/science.1071148
Manouchehri Nastaran, Besancon Stéphane, Bermond Alain (2006): Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. Analytica Chimica Acta, 559, 105-112
https://doi.org/10.1016/j.aca.2005.11.050
Matusiewicz Henryk, Ślachciński Mariusz (2010): Analytical Evaluation of an Integrated Ultrasonic Nebulizer-hydride Generator System for Simultaneous Determination of Hydride and Non-hydride Forming Elements by Microwave Induced Plasma Spectrometry. Spectroscopy Letters, 43, 474-485
https://doi.org/10.1080/00387010903360040
Mavrodineanu R., Hughes R.C. (1963): Excitation in radio-frequency discharges. Spectrochimica Acta, 19, 1309-1317
https://doi.org/10.1016/0371-1951(63)80240-4
McIntosh Jerry L. (1969): Bray and Morgan Soil Extractants Modified for Testing Acid Soils from Different Parent Materials1. Agronomy Journal, 61, 259-
https://doi.org/10.2134/agronj1969.00021962006100020025x
Mehlich A. (1984): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416
https://doi.org/10.1080/00103628409367568
Niedzielski P., Kozak L., Wachelka M., Jakubowski K., Wybieralska J. (2015): The microwave induced plasma with optical emission spectrometry (MIP–OES) in 23 elements determination in geological samples. Talanta, 132, 591-599
https://doi.org/10.1016/j.talanta.2014.10.009
PEASLEE D. E. (1964): COLORIMETRIC DETERMINATION OF CALCIUM IN SOIL EXTRACTS. Soil Science, 97, 248-251
https://doi.org/10.1097/00010694-196404000-00005
Pieters H.A.J., Hanssen W.J., Geurts J.J. (1948): Colorimetric determination of magnesium. Analytica Chimica Acta, 2, 241-253
https://doi.org/10.1016/S0003-2670(01)93794-8
Rauret G (): Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449-455
https://doi.org/10.1016/S0039-9140(97)00406-2
Soil Science Glossary Terms Committee (2008): Glossary of Soil Science Terms 2008. Madison, Soil Science Society of America.
Takagi Makoto, Nakamura Hiroshi, Ueno Keihei (): A Novel Colorimetric Reagent for Potassium Based on Crown Ether Complex Formation. Analytical Letters, 10, 1115-1122
https://doi.org/10.1080/00032717708067847
Tiessen H., Cuevas E., Chacon P. (1994): The role of soil organic matter in sustaining soil fertility. Nature, 371, 783-785
https://doi.org/10.1038/371783a0
Zehetner Franz, Unterfrauner H., Peticzka R., Zehetner F. (): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61, 86-96
https://doi.org/10.17221/932/2014-PSE