Estimation of nitrogen content based on fluorescence spectrum and principal component analysis in paddy rice  

https://doi.org/10.17221/802/2015-PSECitation:Yang J., Gong W., Shi S., Du L., Sun J., Song S.-. (2016): Estimation of nitrogen content based on fluorescence spectrum and principal component analysis in paddy rice  . Plant Soil Environ., 62: 178-183.
download PDF

Paddy rice is one of the most important cereal crops in China. Nitrogen (N) is closely related to crops production by influencing the photosynthetic efficiency of paddy rice. In this study, laser-induced fluorescence (LIF) technology with the help of principal component analysis (PCA) and back-propagation neural network (BPNN) is proposed to monitor leaf N content (LNC) of paddy rice. The PCA is utilized to extract the characteristic variables of LIF spectra by analysing the major attributes. The results showed that the first three principal components (PCs) can explain 95.76% and 93.53% of the total variance contained in the fluorescence spectra for tillering stage and shooting stage, respectively. Then, BPNN was utilized to inverse the LNC on the basis of the first three PCs as input variables and can obtain the satisfactory inversion results (R2 of tillering stage and shooting stage are 0.952 and 0.931, respectively; residual main range from –0.2 to 0.2 mg/g). The experimental results demonstrated that LIF technique combined with multivariate analysis will be a useful method for monitoring the LNC of paddy rice, which can provide consultations for the decision-making of peasants in their N fertilization strategies.  

References:
Apostol Simona, Viau Alain A, Tremblay Nicolas (): A comparison of multiwavelength laser-induced fluorescence parameters for the remote sensing of nitrogen stress in field-cultivated corn. Canadian Journal of Remote Sensing, 33, 150-161  https://doi.org/10.5589/m07-022
 
Aleksandrov V., Krasteva V., Paunov M., Chepisheva M., Kousmanova M., Kalaji H.M., Goltsev V. (2014): Deficiency of some nutrient elements in bean and maize plants analyzed by luminescent method. Bulgarian Journal of Agricultural Science, 20: 24–30.
 
Chappelle Emmett W., Wood Frank M., McMurtrey James E., Newcomb W. Wayne (1984): Laser-induced fluorescence of green plants 1: A technique for the remote detection of plant stress and species differentiation. Applied Optics, 23, 134-  https://doi.org/10.1364/AO.23.000134
 
Chappelle Emmett W., McMurtrey James E., Kim Moon S. (1991): Identification of the pigment responsible for the blue fluorescence band in the laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis. Remote Sensing of Environment, 36, 213-218  https://doi.org/10.1016/0034-4257(91)90058-E
 
Cao Qiang, Miao Yuxin, Wang Hongye, Huang Shanyu, Cheng Shanshan, Khosla R., Jiang Rongfeng (2013): Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154, 133-144  https://doi.org/10.1016/j.fcr.2013.08.005
 
Feng W., Yao X., Zhu Y., Tian Y.C., Cao W.X. (2008): Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy, 28, 394-404  https://doi.org/10.1016/j.eja.2007.11.005
 
Wei Gong, Shalei Song, Bo Zhu, Shuo Shi, Faquan Li, Xuewu Cheng (2012): Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 1-9  https://doi.org/10.1016/j.isprsjprs.2012.02.001
 
Kalaji Hazem M., Oukarroum Abdallah, Alexandrov Vladimir, Kouzmanova Margarita, Brestic Marian, Zivcak Marek, Samborska Izabela A., Cetner Magdalena D., Allakhverdiev Suleyman I., Goltsev Vasilij (2014): Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiology and Biochemistry, 81, 16-25  https://doi.org/10.1016/j.plaphy.2014.03.029
 
Malenovský Zbyněk, Mishra Kumud Bandhu, Zemek František, Rascher Uwe, Nedbal Ladislav (2009): Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. Journal of Experimental Botany, 60, 2987-3004  https://doi.org/10.1093/jxb/erp156
 
Meroni M., Rossini M., Guanter L., Alonso L., Rascher U., Colombo R., Moreno J. (2009): Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113, 2037-2051  https://doi.org/10.1016/j.rse.2009.05.003
 
Olszewski J., Makowska M., Pszczółkowska A., Okorski A., Bieniaszewski T. (2014): The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat. Plant, Soil and Environment, 60: 531–536.
 
Samborska I.A., Alexandrov V., Sieczko L., Kornatowska B., Goltsev V., Cetner M.D., Kalaji H.M. (2014): Artificial neural networks and their application in biological and agricultural research. Signpost Open Access Journal of NanoPhotoBioSciences, 2: 14–30.
 
Tuba Z., Saxena D.K., Srivastava K., Singh S., Czobel S., Kalaji H.M. (2010): Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) biomapping. Current Science (Bangalore), 98: 1505–1508.
 
Tremblay Nicolas, Wang Zhijie, Cerovic Zoran G. (2012): Sensing crop nitrogen status with fluorescence indicators. A review. Agronomy for Sustainable Development, 32, 451-464  https://doi.org/10.1007/s13593-011-0041-1
 
Yi Qiu-Xiang, Huang Jing-Feng, Wang Fu-Min, Wang Xiu-Zhen, Liu Zhan-Yu (2007): Monitoring Rice Nitrogen Status Using Hyperspectral Reflectance and Artificial Neural Network. Environmental Science & Technology, 41, 6770-6775  https://doi.org/10.1021/es070144e
 
Yang J., Gong W., Shi S., Du L., Sun J., Ma Y.-Y., Song S.L. (2015a): Accurate identification of nitrogen fertilizer application of paddy rice using laser-induced fluorescence combined with support vector machine. Plant, Soil and Environment, 61: 501–506.
 
Yang J., Shi S., Gong W., Du L., Ma Y.Y., Zhu B., Song S.L. (2015b): Application of fluorescence spectrum to precisely inverse paddy rice nitrogen content. Plant, Soil and Environment, 61: 182–188.
 
Zong Ruowen, Zhi Youran, Yao Bin, Gao Jiaxin, Stec Anna A. (2014): Classification and identification of soot source with principal component analysis and back-propagation neural network. Australian Journal of Forensic Sciences, 46, 224-233  https://doi.org/10.1080/00450618.2013.818711
 
Živčák M., Olšovská K., Slamka P., Galambošová J., Rataj V., Shao H.-B., Brestič M. (2014a): Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zemdirbyste-Agriculture, 101: 437–444.
 
Živčák M., Olšovská K., Slamka P., Galambošová J., Rataj V., Shao H.B., Brestič M. (2014b): Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant, Soil and Environment, 60: 210–215.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti