Degradation and leaching of bentazone, terbuthylazine and S-metolachlor and some of their metabolites: A long-term lysimeter experiment

https://doi.org/10.17221/803/2018-PSECitation:Schuhmann A., Klammler G., Weiss S., Gans O., Fank J., Haberhauer G., Gerzabek M.H. (2019): Degradation and leaching of bentazone, terbuthylazine and S-metolachlor and some of their metabolites: A long-term lysimeter experiment. Plant Soil Environ., 65: 273-281.
download PDF

The degradation and leaching of bentazone, terbuthylazine and S-metolachlor and their metabolites N-methyl-bentazone, desethyl-terbuthylazine, 2-hydroxy-terbuthylazine, metolachlor ethane sulfonic acid (ESA) and metolachlor oxanilic acid (OA) were investigated using the plant protection products Artett (bentazone/terbuthylazine), Gardo Gold (S-metolachlor/terbuthylazine) and Dual Gold (S-metolachlor) applied to a weighable, monolithic, high precision lysimeter with a loamy, sandy soil. Artett and Gardo Gold were applied at higher doses than recommended according to good agricultural practice. In leachate, S-metolachlor was detected at concentrations of up to 0.15 µg/L, whereas metolachlor-ESA and metolachlor-OA were present at higher concentrations of up to 37 µg/L and 8.4 µg/L, respectively. In a second terbuthylazine application, concentrations of desethyl-terbuthylazine of up to 0.1 µg/L were detected. In soil, bentazone degraded faster than terbuthylazine and S-metolachlor, whereas the metabolization of terbuthylazine after the second application resulted in an enhanced formation of desethyl-terbuthylazine and a highly increased hydroxylation of terbuthylazine. The importance of analysing both parent compounds and metabolites on a long-term scale was demonstrated to better understand the environmental fate and transport.

References:
Arias-Estévez Manuel, López-Periago Eugenio, Martínez-Carballo Elena, Simal-Gándara Jesús, Mejuto Juan-Carlos, García-Río Luis (2008): The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123, 247-260 https://doi.org/10.1016/j.agee.2007.07.011
 
Bayless E. Randall, Capel Paul D., Barbash Jack E., Webb Richard M. T., Hancock Tracy L. Connell, Lampe David C. (2008): Simulated Fate and Transport of Metolachlor in the Unsaturated Zone, Maryland, USA. Journal of Environment Quality, 37, 1064- https://doi.org/10.2134/jeq2006.0562
 
BMG (Bundesministerium für Gesundheit) (2014): Aktionswerte bezüglich nicht relevanter Metaboliten von Pflanzenschutzmittel-Wirkstoffen in Wasser für den menschlichen Gebrauch. Vienna, Erlass BMG-75210/0030-II/B/14/2014. (accessed 28.10.2014)
 
BMLFUW (Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft) (2013): GeoPEARL-Austria, Austragspotential von Pflanzenschutzmittelwirkstoffen und deren Metaboliten in das Grundwasser. Vienna. Available at: https://www.bmlfuw.gv.at/wasser/wasserqualitaet/geopearl.html
 
Boesten J.J.T.I, van der Pas L.J.T (2000): Movement of water, bromide and the pesticides ethoprophos and bentazone in a sandy soil: the Vredepeel data set. Agricultural Water Management, 44, 21-42 https://doi.org/10.1016/S0378-3774(99)00082-7
 
EC (European Commission) (2003): Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater of Substances under Council Directive 91/414/EEC. SANCO/221/2000 – Rev. 10.
 
FOCUS (2006): Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration. Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference SANCO/10058/2005 version 2.0, 434.
 
Fuhrmann A., Gans O., Weiss S., Haberhauer G., Gerzabek M.H. (2014): Determination of bentazone, chloridazon and terbuthy-
 
lazine and some of their metabolites in complex environmental matrices by liquid chromatography-electrospray ionization-tandem mass spectrometry using a modified QuEChERS method: An optimization and validation study. Water, Air, and Soil Pollution, 225: 1944–1959.
 
Gerstl Z., Sluszny C., Alayof A., Graber E.R. (1997): The fate of terbuthylazine in test microcosms. Science of The Total Environment, 196, 119-129 https://doi.org/10.1016/S0048-9697(96)05406-X
 
Gevao B., Semple K.T., Jones K.C. (2000): Bound pesticide residues in soils: a review. Environmental Pollution, 108, 3-14 https://doi.org/10.1016/S0269-7491(99)00197-9
 
Guzzella L., Rullo S., Pozzoni F., Giuliano G. (2003): Studies on Mobility and Degradation Pathways of Terbuthylazine Using Lysimeters on a Field Scale. Journal of Environment Quality, 32, 1089- https://doi.org/10.2134/jeq2003.1089
 
Kahl Gunnar M, Sidorenko Yury, Gottesbüren Bernhard (2015): Local and global inverse modelling strategies to estimate parameters for pesticide leaching from lysimeter studies. Pest Management Science, 71, 616-631 https://doi.org/10.1002/ps.3914
 
Kaune A, Brüggemann R, Kettrup A (1998): High-performance liquid chromatographic measurement of the 1-octanol–water partition coefficient of s-triazine herbicides and some of their degradation products. Journal of Chromatography A, 805, 119-126 https://doi.org/10.1016/S0021-9673(98)00051-X
 
Klammler Gernot, Fank Johann (2014): Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria). Science of The Total Environment, 499, 448-462 https://doi.org/10.1016/j.scitotenv.2014.06.009
 
Klaus Julian, Zehe Erwin, Elsner Martin, Palm Juliane, Schneider Dorothee, Schröder Boris, Steinbeiss Sibylle, van Schaik Loes, West Stephanie (2014): Controls of event-based pesticide leaching in natural soils: A systematic study based on replicated field scale irrigation experiments. Journal of Hydrology, 512, 528-539 https://doi.org/10.1016/j.jhydrol.2014.03.020
 
Kupfersberger Hans, Klammler Gernot, Schumann Andrea, Brückner Lisa, Kah Mélanie (2018): Modeling Subsurface Fate of -Metolachlor and Metolachlor Ethane Sulfonic Acid in the Westliches Leibnitzer Feld Aquifer. Vadose Zone Journal, 17, 0- https://doi.org/10.2136/vzj2017.01.0030
 
Lewis Kathleen A., Tzilivakis John, Warner Douglas J., Green Andrew (2016): An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22, 1050-1064 https://doi.org/10.1080/10807039.2015.1133242
 
Li Kebin, Liu Weiping, Xu Dongmei, Lee Sangjin (2003): Influence of Organic Matter and pH on Bentazone Sorption in Soils. Journal of Agricultural and Food Chemistry, 51, 5362-5366 https://doi.org/10.1021/jf0343332
 
Loos Robert, Locoro Giovanni, Comero Sara, Contini Serafino, Schwesig David, Werres Friedrich, Balsaa Peter, Gans Oliver, Weiss Stefan, Blaha Ludek, Bolchi Monica, Gawlik Bernd Manfred (2010): Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Research, 44, 4115-4126 https://doi.org/10.1016/j.watres.2010.05.032
 
Meite Fatima, Alvarez-Zaldívar Pablo, Crochet Alexandre, Wiegert Charline, Payraudeau Sylvain, Imfeld Gwenaël (2018): Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils. Science of The Total Environment, 616-617, 500-509 https://doi.org/10.1016/j.scitotenv.2017.10.297
 
Schuhmann Andrea, Gans Oliver, Weiss Stefan, Fank Johann, Klammler Gernot, Haberhauer Georg, Gerzabek Martin H. (2016): A long-term lysimeter experiment to investigate the environmental dispersion of the herbicide chloridazon and its metabolites—comparison of lysimeter types. Journal of Soils and Sediments, 16, 1032-1045 https://doi.org/10.1007/s11368-015-1311-3
 
Umweltbundesamt (2015): Gesundheitliche Orientierungswerte (GOW) für nicht relevante Metaboliten (nrM) von Wirkstoffen aus Pflanzenschutzmitteln (PSM). Dessau-Roßlau, Fortschreibungsstand: 28.05.2015. Available at: https://www.umweltbundesamt.de/sites/default/files/medien/374/dokumente/tabelle_gow_nrm2.pdf
 
Wagner Stephen C., Zablotowicz Robert M., Gaston Lewis A., Locke Martin A., Kinsella Jim (1996): Bentazon Degradation in Soil:  Influence of Tillage and History of Bentazon Application. Journal of Agricultural and Food Chemistry, 44, 1593-1598 https://doi.org/10.1021/jf950551m
 
Walker A, Jurado-Exposito M, Bending G.D, Smith V.J.R (2001): Spatial variability in the degradation rate of isoproturon in soil. Environmental Pollution, 111, 407-415 https://doi.org/10.1016/S0269-7491(00)00092-0
 
download PDF

© 2019 Czech Academy of Agricultural Sciences