Harvesting and phytosanitary parameters with particular regard to mycotoxin content of maize as a function of different seasonal, fertilisation and hybrid effect


Keszthelyi S., Kadlicskó S., Pásztor Gy., Takács A., Szolcsányi É., Pál-Fám F., Lukács H., Pónya Zs., Hoffmann R., Rudolf K., Sipos T., Piszker É., Treitz M., Mesterházy Á., Somfalvi-Tóth K., Jócsák I., Kazinczi G. (2022): Harvesting and phytosanitary parameters with particular regard to mycotoxin content of maize as a function of different seasonal, fertilisation and hybrid effect. Plant Soil Environ., 68: 262–271.

download PDF

The aim of our three consecutive years (2017–2019) field trial was to obtain information as to the effect of weather conditions of the actual year as well as to assess the impact of some technological parameters such as fertilisation, the choice on the hybrid type on the yield parameters, phytosanitary conditions and mycotoxin contamination of maize. According to our results, the climatic characteristics of the years, the examined hybrid characters (FAO 310 and 490) and the fact of N-fertilisation had significant effects on yield parameters and grain moisture content. The additional N-supply did not affect the development or severity of stem rot in any of the hybrid effects. In this respect, the year effect appeared to be the decisive factor since much higher stem rot values were recorded in the plots of the longer growing season hybrids. Among the mycotoxins examined, only zearalenone and fumonisin found in the harvest were significantly influenced by the effect of the year, the length of the growing season as well as nutrient replenishment. It can be stated that the applied technological parameters have a major effect on the expression of this toxin load in maize. Dry maize stocks that have lost their water in the vegetation are predisposing factors for toxin accumulation. N-content of soil and that of plants can play a different role in mycotoxin accumulation in maize plants.

Akmal M., Rehman-Ur-Hameed, Farhatullah, Asim M., Akbar H. (2010): Response of maize varieties to nitrogen application for leaf area profile, crop growth, yield and yield components. Pakistan Journal of Botany, 42: 1941–1947.
Aminu R.O., Ayinde I.A., Ibrahim S.B. (2015): Technical efficiency of maize production in Ogun State, Nigeria. Journal of Development and Agricultural Economics, 7: 55–60. https://doi.org/10.5897/JDAE2014.0579
Atlin G.N., Enerson P.M., McGirr L.G., Hunter R.B. (1983): Gibberella ear rot development and zearalenone and vomitoxin production as affected by maize genotype and Gibberella zeae strain. Canadian Journal of Plant Science, 63: 847–853. https://doi.org/10.4141/cjps83-107
Bartók T., Szécsi Á., Szekeres A., Mesterházy Á., Bartók M. (2006): Detection of new fumonisins mycotoxins and fumonisin-like compounds by reversed-phase high-performance liquid chromatograpy/electrospray inonization ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 20: 2447–2462. https://doi.org/10.1002/rcm.2607
Bartók T., Tölgyesi L., Szécsi Á., Varga J., Bartók M., Mesterházy A., Gyimes E., Veha A. (2013): Identification of unknown isomers of fumonisin B5 mycotoxin in a Fusarium verticillioides culture by high-performance liquid chromatography/electrospray ionization time-of-flight and ion trap mass spectrometry. Journal of Liquid Chromatography and Related Technologies, 36: 1549–1561. https://doi.org/10.1080/10826076.2012.692151
Bernhoft A., Torp M., Clasen P.-E., Løes A.-K., Kristoffersen A.B. (2012): Influence of agronomic and climatic factors on Fusarium infestation and mycotoxin contamination of cereals in Norway. Food Additives and Contaminants. Part A, Chemistry, Analysis, Control, Exposure and Risk Assessment, 29: 1129–1140.
Biswas D.K., Ma B.L. (2016): Effect of nitrogen rate and fertilizer nitrogen source on physiology, yield, grain quality, and nitrogen use efficiency in corn. Canadian Journal of Plant Science, 96: 392–403. https://doi.org/10.1139/cjps-2015-0186
Blandino M., Reyneri A., Vanara F. (2008a): Influence of nitrogen fertilization on mycotoxin contamination of maize kernels. Crop Protection, 27: 222–230. https://doi.org/10.1016/j.cropro.2007.05.008
Blandino M., Reyneri A., Vanara F. (2008b): Effect of plant density on toxigenic fungal infection and mycotoxin contamination of maize kernels. Field Crops Research, 106: 234–241. https://doi.org/10.1016/j.fcr.2007.12.004
Christensen J.J., Wilcoxson R.D. (1966): Stalk Rot of Corn. St. Paul, American Phytopathological Society, 59.
Delibaltova V., Tonev T., Zheliazkov I. (2009): Effect of sowing density on the productivity of maize hybrids cultivated for grain under irrigation in Plovdiv region. Plant Science, 46: 412–416.
Ewees M.S.A., Yazal S.A.S.E., Sowfy D.M.E. (2008): Improving maize grain yield and its quality grown on a newly reclaimed sandy soil by applying micronutrient, organic manure and biological inoculation. Research Journal of Agriculture and Biological Sciences, 4: 537–544.
Farnham D.E. (2001): Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agronomy Journal, 93: 1049–1053. https://doi.org/10.2134/agronj2001.9351049x
Guo B.Z., Ji X.Y., Ni X.Z., Fountain J.C., Li H., Abbas H.K., Lee R.D., Scully B.T. (2017): Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field. The Crop Journal, 5: 259–264. https://doi.org/10.1016/j.cj.2016.10.005
Hajiboland R. (2012): Effect of micronutrient deficiencies on plants stress responses. In: Ahmad P., Prasad M.N.V. (eds.): Abiotic Stress Responses in Plants. New York, Springer, 283–329.
Heier T., Jain S.K., Kogel K.-H., Pons-Kühnemann J. (2005): Influence of N-fertilization and fungicide strategies on Fusarium head blight severity and mycotoxin content in winter wheat. Journal of Phytopathology, 153: 551–557. https://doi.org/10.1111/j.1439-0434.2005.01021.x
Hirte J., Leifeld J., Abiven S., Mayer J. (2018): Maize and wheat root biomass, vertical distribution, and size class as affected by fertilisation intensity in two long-term field trials. Field Crops Research, 216: 197–208. https://doi.org/10.1016/j.fcr.2017.11.023
Hossain A. (2020): Maize: Production and Use. BoD – Books on Demand. London, InTechOpen.
Imran S., Arif M., Khan A., Khan M.A., Shah W., Latif A. (2015): Effect of nitrogen levels and plant population on yield and yield components of maize. Advances in Crop Science and Technology, 3: 170.
Keszthelyi S., Pónya Zs. (2019): Canopy-dwelling arthropod response to rynaxypyr and lambda-cyhalothrin treatments in maize. Scientia Agriculturae Bohemica, 50: 236–243. https://doi.org/10.2478/sab-2019-0033
Leggett M., Newlands N.K., Greenshields D., West L., Inman S., Koivunen M.E. (2015): Maize yield response to a phosphorus-solubilizing microbial inoculant in field trials. The Journal of Agricultural Science, 153: 1464–1478. https://doi.org/10.1017/S0021859614001166
Logrieco A., Mulè G., Moretti A., Bottalico A. (2002): Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European Journal of Plant Pathology, 108: 597–609. https://doi.org/10.1023/A:1020679029993
Lone A.A., Khan M.H., Dar Z.A., Wani S.H. (2018): Breeding strategies for improving growth and yield under waterlogging conditions in maize: a review. Maydica, 61: 1–11.
Mesterházy A., Vojtovics M. (1977): Rate of Fusarium spp. infectiontion in maize 1972–1975. Növénytermelés, 26: 367–378.
Mesterházy A. (1979): Stalk splitting as a method for evaluating stalk rot of corn (Breeding for resistance to fungal diseases). Plant Disease Reporter, 63: 227–231.
Mesterházy Á., Lemmens M., Reid L.M. (2012): Breeding for resistance to ear rots caused by Fusarium spp. in maize – a review. Plant Breeding, 131: 1–19. https://doi.org/10.1111/j.1439-0523.2011.01936.x
Mesterházy A., Kovács G., Kovács K. (2000): Breeding resistance for Fusarium ear rot (FER) in corn. In: Proceeding of the 18th International Conference on Maize and Sorghum Genetics and Breeding, Eucarpia, Beograd, Acta Biologica Yugoslavia Serija F. Genetika, 32: 495–505.
Mesterházy A. (2018): Diseases caused by toxic fungi in maize and their evaluation. Kukorica Barométer, 25: 1–20. (In Hungarian)
Mesterházy A., Tóth E.T., Szél S., Varga M., Tóth B. (2020): Resistance of maize hybrids to Fusarium graminearum, F. culmorum and F. verticillioides ear rots with toothpick and silk channel inoculation, as well as their toxin production. Agronomy, 10: 1283. https://doi.org/10.3390/agronomy10091283
Molnár O., Schatzmayr G., Fuchs E., Prillinger H. (2004): Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Systematic and Applied Microbiology, 27: 661–671. https://doi.org/10.1078/0723202042369947
Munkvold G.P., White D.G. (2016): Compendium of Corn Diseases. 4th Edition. St. Paul, APS Press, 165. ISBN: 978-0-89054-494-5
Mwalupaso G.E., Wang S.G., Rahman S., Alavo E.J.-P., Tian X. (2019): Agricultural informatization and technical efficiency in maize production in Zambia. Sustainability, 11: 2451. https://doi.org/10.3390/su11082451
Oldenburg E., Ellner F. (2005): Fusarium mycotoxins in forage maize – detection and evaluation. Mycotoxin Research, 21: 105–107. https://doi.org/10.1007/BF02954430
Oldenburg E., Höppner F., Ellner F., Weinert J. (2017): Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Research, 33: 167–182. https://doi.org/10.1007/s12550-017-0277-y
Reid L.M., Zhu X., Ma B.L. (2001): Crop rotation and nitrogen effects on maize susceptibility to gibberella (Fusarium graminearum) ear rot. Plant and Soil, 237: 1–14. https://doi.org/10.1023/A:1013311703454
Sharifi R.S., Taghizadeh R. (2009): Response of maize (Zea mays L.) cultivars to different levels of nitrogen fertilizer. Journal of Food, Agriculture and Environment, 7: 518–521.
Shrestha J., Yadav D.N., Amgain L.P., Sharma J.P. (2018): Effects of nitrogen and plant density on maize (Zea mays L.) phenology and grain yield. Current Agriculture Research Journal, 6: 175. https://doi.org/10.12944/CARJ.6.2.06
Sinclair T.R., Muchow R.C. (1995): Effect of nitrogen supply on maize yield: I. Modeling physiological responses. Agronomy Journal, 87: 632–641. https://doi.org/10.2134/agronj1995.00021962008700040005x
Szabó B., Tóth B., Toldine E.T., Varga M., Kovács N., Varga J., Kocsube S., Palégyi A., Bagi F., Budakov D., Stojsin V., Lazic S., Borroza-Solarov M., Colovic R., Bekavac G., Purar B., Jockovic D., Mesterházy A. (2018): A new concept to secure food safety standards against Fusarium species and Aspergillus flavus and their toxins in maize. Toxins, 10: 372. https://doi.org/10.3390/toxins10090372
Szabó B., Varga M., György A., Mesterházy A., Tóth B. (2016): Role of Fusarium species in mycotoxin contamination of maize. Review on Agriculture and Rural Development, 5: 104–108. https://doi.org/10.14232/rard.2016.1-2.104-108
Szécsi Á., Szekeres A., Bartók T., Oros G., Bartók M., Mesterházy Á. (2010): Fumonisin B1-4-producing capacity of Hungarian Fusrium verticillioides isolates. World Mycotoxin Journal, 3: 67–76. https://doi.org/10.3920/WMJ2009.1152
Szulc P., Bocianowski J., Rybus-Zając M. (2012): Response of nitrogen nutritional indices maize leaves to different mineral-organic fertilization. Maydica, 57: 260–265.
Teich A.H. (1989): Epidemiology of corn (Zea mays L.) ear rot caused by Fusarium spp. In: Chełkowski J. (ed.): Topics in Secondary Metabolism, Fusarium. Amsterdam, Elsevier, 319–328.
Varga J., Tóth B., Mesterházy Á., Téren J., Fazekas B. (2004): Mycotoxigenic fungi and mycotoxins in foods and feeds in Hungary. In: Logrieco A., Visconti A. (eds.): An Overview on Toxigenic Fungi and Mycotoxins in Europe. Berlin, Springer, 123–139. ISBN: 978-1-4020-2646-1
Widdicombe W.D., Thelen K.D. (2002): Row width and plant density effects on corn grain production in the Northern Corn Belt. Agronomy Journal, 94: 1020–1023. https://doi.org/10.2134/agronj2002.1020
Yi C., Kaul H.-P., Kübler E., Schwadorf K., Aufhammer W. (2001): Head blight (Fusarium graminearum) and deoxynivalenol concentration in winter wheat as affected by pre-crop, soil tillage and nitrogen fertilization. Journal of Plant Disease and Protection, 108: 217–230.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti