Effects of the herbicides benfluralin, metribuzin and propyzamide on the survival and weight of earthworms (Octodrilus complanatus)  

https://doi.org/10.17221/811/2016-PSECitation:S. Travlos I., Gkotsi T., Roussis I., Kontopoulou C., Kakabouki I., J. Bilalis D. (2017): Effects of the herbicides benfluralin, metribuzin and propyzamide on the survival and weight of earthworms (Octodrilus complanatus)  . Plant Soil Environ., 63: 117-124.
download PDF
Extended pesticide use might be of high risk for several non-target organisms like earthworms. Herbicides represent a major part of the total pesticides used; however, their effects on soil organisms have been only partially studied. The effects of the herbicides benfluralin, metribuzin and propyzamide at different rates on the survival and weight of earthworms (Octodrilus complanatus) were determined and compared in this study. Our results revealed significant effects of benfluralin, metribuzin and propyzamide on growth and survival of earthworms. Moreover, there was a significant effect of herbicide rate and time after treatment. For several herbicides, the highest weight reduction was obtained for double the recommended rate and was up to 70% compared to the untreated soil. This study highlights the importance of not exceeding the recommended rates of herbicides, while further studies in a range of conditions are certainly required.  
References:
Bagul P.K., More B.C., Patole S.S. (2016): Sub lethal effects of cypermethrin and oxyfluorfen on stress enzyme activities of earthworm species, Eisenia foetida Savigny, 1826. International Journal of Innovative Research in Science, Engineering and Technology, 5: 21178–21182.
 
Bilalis D, Tzortzi I, Vavoulidou E, Karkanis A, Emmanouel N, Efthimiadou A, Katsenios N, Patsiali S, Dellaporta L (2013): Effects of aluminum and moisture levels on aluminum bioaccumulation and protein content in the earthworm Octodrilus complanatus. Journal of soil science and plant nutrition, , 0-0  https://doi.org/10.4067/S0718-95162013005000067
 
Carter L.J., Ryan J.J., Boxall A.B.A. (2016): Does uptake of pharmaceuticals vary across earthworm species? Bulletin of Environmental Contamination and Toxicology, 97: 316–322.
 
Chen Chen, Wang Yanhua, Zhao Xueping, Qian Yongzhong, Wang Qiang (2014): Combined toxicity of butachlor, atrazine and λ-cyhalothrin on the earthworm Eisenia fetida by combination index (CI)-isobologram method. Chemosphere, 112, 393-401  https://doi.org/10.1016/j.chemosphere.2014.04.070
 
Cortet Jérôme, Vauflery Annette Gomot-De, Poinsot-Balaguer Nicole, Gomot Lucien, Texier Christine, Cluzeau Daniel (1999): The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology, 35, 115-134  https://doi.org/10.1016/S1164-5563(00)00116-3
 
Edwards C.A., Bohlen P.J. (1992): The effects of toxic chemicals on earthworms. Reviews of Environmental Contamination and Toxicology, 125: 23–99.
 
García-Pérez José Antonio, Alarcón-Gutiérrez Enrique, Perroni Yareni, Barois Isabelle (2013): Earthworm communities and soil properties in shaded coffee plantations with and without application of glyphosate. Applied Soil Ecology, , -  https://doi.org/10.1016/j.apsoil.2013.09.006
 
Givaudan Nicolas, Binet Françoise, Le Bot Barbara, Wiegand Claudia (2014): Earthworm tolerance to residual agricultural pesticide contamination: Field and experimental assessment of detoxification capabilities. Environmental Pollution, 192, 9-18  https://doi.org/10.1016/j.envpol.2014.05.001
 
Hance R.J., Smith P.D., Cotterill E.G., Reid D.C. (1978): Herbicide persistance: Effects of plant cover, previous history of the soil and cultivation. Mededelingen van de Fakulteit Landbouwwetenschappen, Gent, 43: 1127–1134.
 
Hernandez Felix, Beltran Joaquin, Forcada Maria, Lopez Francisco J., Morell Ignacio (1998): Experimental Approach for Pesticide Mobility Studies in the Unsaturated Zone. International Journal of Environmental Analytical Chemistry, 71, 87-103  https://doi.org/10.1080/03067319808032619
 
Hickman Zachary A., Reid Brian J. (2008): Earthworm assisted bioremediation of organic contaminants. Environment International, 34, 1072-1081  https://doi.org/10.1016/j.envint.2008.02.013
 
Hyzak D.L., Zimdahl R.L. (1974): Rate of degradation of metribuzin and two analogs in soil. Weed Science, 22: 75–79.
 
Iordache M., Borza I. (2010): Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant, Soil and Environment, 56: 401–407.
 
Iordache M., Borza I. (2011): Study of the acute toxicity of some pesticides on earthworms Eisenia foetida (Savigny, 1826). Research Journal of Agricultural Science, 43: 95–100.
 
Kula H. (1995): Comparison of laboratory and field testing for the assessment of pesticide side effects on earthworms. Acta Zoologica Fennica, 196: 338–341.
 
Landgraf Maria Diva, da Silva Sebastião Claudino, de O. Rezende Maria Olı́mpia (1998): Mechanism of metribuzin herbicide sorption by humic acid samples from peat and vermicompost. Analytica Chimica Acta, 368, 155-164  https://doi.org/10.1016/S0003-2670(98)00049-X
 
Lourenço Joana I., Pereira Ruth O., Silva Ana C., Morgado José M., Carvalho Fernando P., Oliveira João M., Malta Margarida P., Paiva Artur A., Mendo Sónia A., Gonçalves Fernando J. (2011): Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. Journal of Hazardous Materials, 186, 788-795  https://doi.org/10.1016/j.jhazmat.2010.11.073
 
Monroy Fernando, Aira Manuel, Gago José Ángel, Domínguez Jorge (2007): Life cycle of the earthworm Octodrilus complanatus (Oligochaeta, Lumbricidae). Comptes Rendus Biologies, 330, 389-391  https://doi.org/10.1016/j.crvi.2007.03.016
 
Mosleh Yahia Y., Paris-Palacios Séverine, Couderchet Michel, Vernet Guy (2003): Effects of the herbicide isoproturon on survival, growth rate, and protein content of mature earthworms (Lumbricus terrestris L.) and its fate in the soil. Applied Soil Ecology, 23, 69-77  https://doi.org/10.1016/S0929-1393(02)00161-0
 
Paoletti Maurizio G. (1999): The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems & Environment, 74, 137-155  https://doi.org/10.1016/S0167-8809(99)00034-1
 
Pavlíček T., Csuzdi C. (2006): Species richness and zoogeographic affinities of earthworms in Cyprus. European Journal of Soil Biology, 42: S111–S116.
 
Pelosi Céline, Barot Sébastien, Capowiez Yvan, Hedde Mickaël, Vandenbulcke Franck (2014): Pesticides and earthworms. A review. Agronomy for Sustainable Development, 34, 199-228  https://doi.org/10.1007/s13593-013-0151-z
 
Reinecke S.A., Reinecke A.J. (2007): The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa. Ecotoxicology and Environmental Safety, 66, 244-251  https://doi.org/10.1016/j.ecoenv.2005.10.006
 
Roberts T.R., Hutson D.H., Lee P.W., Nicholls P.H., Plimmer J.R. (1998a): Dinitroanilines: Benfluralin. In: Roberts T.R., Hutson D.H., Lee P.W., Nicholls P.H., Plimmer J.R. (eds.): Metabolic Pathways of Agrochemicals, Part 1: Herbicides and Plant Growth Regulators. Cambridge, The Royal Society of Chemistry, 245–248.
 
Roberts T.R., Hutson D.H., Lee P.W., Nicholls P.H., Plimmer J.R. (1998b): 1,2,4-Triazinones: Metribuzin. In: Roberts T.R., Hutson D.H., Lee P.W., Nicholls P.H., Plimmer J.R. (eds.): Metabolic Pathways of Agrochemicals, Part 1: Herbicides and Plant Growth Regulators. Cambridge, The Royal Society of Chemistry, 662–670.
 
Robidoux Pierre Yves, Hawari Jalal, Thiboutot Sonia, Ampleman Guy, Sunahara Geoffrey I. (1999): Acute Toxicity of 2,4,6-Trinitrotoluene in Earthworm (Eisenia andrei). Ecotoxicology and Environmental Safety, 44, 311-321  https://doi.org/10.1006/eesa.1999.1839
 
Römbke J., Sousa J.-P., Schouten T., Riepert F. (2006): Monitoring of soil organisms: a set of standardized field methods proposed by ISO. European Journal of Soil Biology, 42, S61-S64  https://doi.org/10.1016/j.ejsobi.2006.07.016
 
Savage K.E. (1976): Adsorption and mobility of metribuzin in soil. Weed Science, 24: 525–528.
 
Stenersen Jorgen, Gilman Andrew, Vardanis Alexander (1973): Carbofuran. Its toxicity to and metabolism by earthworm (Lumbricis terrestris). Journal of Agricultural and Food Chemistry, 21, 166-171  https://doi.org/10.1021/jf60186a013
 
Vavoulidou Evangelia, Avramides Elisabeth, Wood Martin, Lolos Polykarpos (2009): Response of Soil Quality Indicators to the Pesticide Cadusaphos. Communications in Soil Science and Plant Analysis, 40, 419-434  https://doi.org/10.1080/00103620802697996
 
Velki Mirna, Ečimović Sandra (2015): Changes in exposure temperature lead to changes in pesticide toxicity to earthworms: A preliminary study. Environmental Toxicology and Pharmacology, 40, 774-784  https://doi.org/10.1016/j.etap.2015.09.009
 
Vischetti Costantino, Casucci Cristiano, Perucci Piero (2002): Relationship between changes of soil microbial biomass content and imazamox and benfluralin degradation. Biology and Fertility of Soils, 35, 13-17  https://doi.org/10.1007/s00374-001-0433-5
 
Xiao Nengwen, Jing Bobin, Ge Feng, Liu Xianghui (2006): The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. Chemosphere, 62, 1366-1373  https://doi.org/10.1016/j.chemosphere.2005.07.043
 
Xu Dongmei, Wen Yuezhong, Wang Kaixiong (2010): Effect of chiral differences of metolachlor and its (S)-isomer on their toxicity to earthworms. Ecotoxicology and Environmental Safety, 73, 1925-1931  https://doi.org/10.1016/j.ecoenv.2010.07.035
 
Yasmin Shahla, D’Souza Doris (2007): Effect of Pesticides on the Reproductive Output of Eisenia fetida. Bulletin of Environmental Contamination and Toxicology, 79, 529-532  https://doi.org/10.1007/s00128-007-9269-5
 
Yasmin Shahla, D'Souza Doris (2010): Effects of Pesticides on the Growth and Reproduction of Earthworm: A Review. Applied and Environmental Soil Science, 2010, 1-9  https://doi.org/10.1155/2010/678360
 
Zarea M.J., Karimi N. (2012): Effect of herbicides on earthworms. Dynamic Soil, Dynamic Plant, 6: 5–13.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti