Different carbon sources enhance system productivity and reduce greenhouse gas intensity
Stephen Yeboah, Zhang Reanzhi, Cai Liqun, Wu Jun
https://doi.org/10.17221/83/2018-PSECitation:Yeboah S., Reanzhi Z., Liqun C., Jun W. (2018): Different carbon sources enhance system productivity and reduce greenhouse gas intensity. Plant Soil Environ., 64: 463-469.The aim of this study was to investigate the effect of biochar, straw and nitrogen (N) fertilizer on soil properties, crop yield and greenhouse gas intensity in rainfed spring wheat (Triticum aestivum L.), and to produce background dataset to improve nutrient management guidelines for semiarid environments. The two carbon sources (straw and biochar) were applied alone or combined with nitrogen fertilizer (urea, 46% N), whilst the soil without carbon amendment was fertilized by urea in the rates 0, 50 and 100 kg N/ha. The experiments were arranged in a randomized complete block design with three replicates. The greatest yields were found with 100 kg N/ha under biochar, straw and soils without carbon. Biochar treated soils produced the greatest grain yield at 1906 kg/ha, followed by straw at 1643 kg/ha, and soils without carbon at 1553 kg/ha. This was explained by increased easily oxidizable carbon and total soil nitrogen in the biochar treated soil (P < 0.05). Straw treated soils and soils without carbon increased global warming potential by 13% and 14% compared to biochar amended soils. The biochar amended treatment also improved easily oxidizable carbon and total nitrogen (P < 0.05), which supported the above results. BN100 (15 t/ha biochar + 100 kg N/ha) reduced greenhouse gas intensity by approximately 30% compared to CN100 (100 kg N/ha applied each year) and SN50 (4.5 t/ha straw applied each year + 50 kg N/ha). Based on these results, biochar could be used with N-fertilizer as a soil conditioner to improve yield and reduced greenhouse gas intensity.
charcoal; semi-arid environment; climate change; fertilization; soil carbon
References:Impact factor (Web of Science):
2020: 1.799
Q2 – Agronomy
5-Year Impact Factor: 2.169
SCImago Journal Rank (SCOPUS):
New Issue Alert
Join the journal on Facebook!
Ask for email notification.
Similarity Check
All the submitted manuscripts are checked by the CrossRef Similarity Check.
Abstracts are comprised in the databases
AGRICOLA
Agrindex of AGRIS/FAO databáze
AGRIS International
CAB Abstracts
CNKI
CrossRef
Current Contents®/Agriculture, Biology and Environmental Sciences
Czech Agricultural and Food Bibliography
DOAJ (Directory of Open Access Journals)
Food Science and Technology Abstracts
Google Scholar
ISI Web of KnowledgeSM
J-GATE
Science Citation Index Expanded®
SCOPUS
TOXLINE Plus
Web of Science® (Core Collection)
Licence terms
All content is made freely available for non-commercial purposes, users are allowed to copy and redistribute the material, transform, and build upon the material as long as they cite the source.
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Contact
Mgr. Kateřina Součková
Executive Editor
e-mail: pse
Address
Plant, Soil and Environment
Czech Academy of Agricultural Sciences
Slezská 7, 120 00 Praha 2,
Czech Republic