Emission of climate relevant volatile organochlorines by plants occurring in temperate forests

https://doi.org/10.17221/900/2014-PSECitation:Forczek S.T., Laturnus F., Doležalová J., Holík J., Wimmer Z. (2015): Emission of climate relevant volatile organochlorines by plants occurring in temperate forests. Plant Soil Environ., 61: 103-108.
download PDF

Chlorine, one of the most abundant elements in nature, undergoes a complex biogeochemical cycle in the environment, involved in the formation of volatile organochlorines (VOCls), which in turn can contribute to environmental problems, contaminate natural ecosystems, and are of public health concern. Several industrial and natural sources of VOCls have already been identified; however, data – particularly on the natural sources – are still scarce. The aim of this study was to investigate the diversity of emission of VOCls from soil and several undergrowth plants collected in temperate spruce forest ecosystem and the effect of salting on the VOCl emission of plants. Undergrowth plants were found to emit chloroform (CHCl3) in the range of 2.2–201 pmol/day/g dry weight (DW), tetrachloromethane (CCl4) 0–23.5 pmol/day/g DW, and tetrachloroethene (C2Cl4) 0–13.5 pmol/day/g DW; the average emission rates were about 10 times higher than that of soil (2.9–47.2; 0–5.8; 0–3.6 pmol/day/g DW of CHCl3; CCl4; C2Cl4 emission, respectively). Addition of sodium chloride solution in most cases caused an increase in the emission of CHCl3 and caused a species specific – effect on the emissions of CCl4 and C2Cl4. The results suggest that the emission of VOCls from spruce forest contribute to the atmospheric input of reactive chlorine; however, on a global scale it is only a minor net source.

ABRAHAMSSON K., EKDAHL A., COLLÉN J., PEDERSÉN M. (1995): Marine algae-a source of trichloroethylene and perchloroethylene. Limnology and Oceanography, 40, 1321-1326  https://doi.org/10.4319/lo.1995.40.7.1321
Asplund G. (1995): Origin and occurrence of halogenated organic matter in soil. In: Grimvall A., de Leer E.W.B. (eds): Naturally-Produced Organohalogens. Dordrecht, Kluwer Academic Publishers, 35–48.
Butler J.H. (2000): Atmospheric chemistry. Better budgets for methyl halides? Nature, 403: 260–261.
Forczek S. T., Schröder P., Weissflog L., Krüger G., Rohlenová J., Matucha M. (2008): Trichloroacetic acid of different origin in Norway spruce needles and chloroplasts. Biologia Plantarum, 52, 177-180  https://doi.org/10.1007/s10535-008-0039-y
Forczek S.T., Benada O., Kofroňová O., Sigler K., Matucha M. (2011): Influence of road salting on the adjacent Norway spruce (Picea abies) forest. Plant, Soil and Environment, 57: 344–350.
Haselmann Kim F, Laturnus Frank, Svensmark Bo, Grøn Christian (2000): Formation of chloroform in spruce forest soil – results from laboratory incubation studies. Chemosphere, 41, 1769-1774  https://doi.org/10.1016/S0045-6535(00)00044-8
Hoekstra Eddo J, Duyzer Jan H, de Leer Ed W.B, Brinkman Udo A.Th (2001): Chloroform – concentration gradients in soil air and atmospheric air, and emission fluxes from soil. Atmospheric Environment, 35, 61-70  https://doi.org/10.1016/S1352-2310(00)00285-5
Huang Binbin, Lei Chao, Wei Chaohai, Zeng Guangming (2014): Chlorinated volatile organic compounds (Cl-VOCs) in environment — sources, potential human health impacts, and current remediation technologies. Environment International, 71, 118-138  https://doi.org/10.1016/j.envint.2014.06.013
Keppler F., Eiden R., Niedan V., Pracht J., Schöler H.F. (2000): Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature, 403: 298–301. https://doi.org/10.1038/35002055
Khalil M. A. K., Rasmussen R. A., Shearer M. J., Chen Zong-Liang, Yao Heng, Yang Jun (1998): Emissions of methane, nitrous oxide, and other trace gases from rice fields in China. Journal of Geophysical Research, 103, 25241-  https://doi.org/10.1029/98JD01114
Laturnus Frank, Adams Freddy C., Wiencke Christian (1998): Methyl halides from Antarctic macroalgae. Geophysical Research Letters, 25, 773-776  https://doi.org/10.1029/98GL00490
Laturnus Frank, Lauritsen Frants R., Grøn Christian (2000): Chloroform in a pristine aquifer system: Toward an evidence of biogenic origin. Water Resources Research, 36, 2999-3009  https://doi.org/10.1029/2000WR900194
Lobert Jürgen M., Keene William C., Logan Jennifer A., Yevich Rosemarie (1999): Global chlorine emissions from biomass burning: Reactive Chlorine Emissions Inventory. Journal of Geophysical Research, 104, 8373-  https://doi.org/10.1029/1998JD100077
Matucha M., Clarke N., Lachmanová Z., Forczek S.T., Fuksová K., Gryndler M. (2010): Biogeochemical cycles of chlorine in the coniferous forest ecosystem: Practical implications. Plant, Soil and Environment, 56: 357–367.
Millet Dylan B., Atlas Elliot L., Blake Donald R., Blake Nicola J., Diskin Glenn S., Holloway John S., Hudman Rynda C., Meinardi Simone, Ryerson Thomas B., Sachse Glen W. (2009): Halocarbon Emissions from the United States and Mexico and Their Global Warming Potential. Environmental Science & Technology, 43, 1055-1060  https://doi.org/10.1021/es802146j
Mtolera Matern S.P., Collén Jonas, Pedersén Marianne, Ekdahl Anja, Abrahamsson Katarina, Semesi Adelaida K. (1996): Stress-induced production of volatile halogenated organic compounds in Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities. European Journal of Phycology, 31, 89-95  https://doi.org/10.1080/09670269600651241
Penuelas J., Llusia J. (2001): The complexity of factors driving volatile organic compound emissions by plants. Biologia Plantarum, 44: 481–487. https://doi.org/10.1023/A:1013797129428
Rhew R.C., Miller B.R., Weiss R.F. (2000): Natural methyl bromide and methyl chloride emissions from coastal salt marshes. Nature, 403: 292–295. https://doi.org/10.1038/35002043
Rhew Robert C., Miller Benjamin R., Weiss Ray F. (2008): Chloroform, carbon tetrachloride and methyl chloroform fluxes in southern California ecosystems. Atmospheric Environment, 42, 7135-7140  https://doi.org/10.1016/j.atmosenv.2008.05.038
Saito Takuya, Yokouchi Yoko (2006): Diurnal variation in methyl halide emission rates from tropical ferns. Atmospheric Environment, 40, 2806-2811  https://doi.org/10.1016/j.atmosenv.2006.01.016
Scheeren H. A., Lelieveld J., Williams J., Fischer H., Warneke C. (2003): Measurements of reactive chlorocarbons over the Surinam tropical rain forest: indications for strong biogenic emissions. Atmospheric Chemistry and Physics Discussions, 3, 5469-5512  https://doi.org/10.5194/acpd-3-5469-2003
Svensson Teresia, Laturnus Frank, Sandén Per, Öberg Gunilla (2007): Chloroform in runoff water—a two-year study in a small catchment in Southeast Sweden. Biogeochemistry, 82, 139-151  https://doi.org/10.1007/s10533-006-9059-x
Wang Jinxin, Qin Pei, Sun Shucun (2007): The flux of chloroform and tetrachloromethane along an elevational gradient of a coastal salt marsh, East China. Environmental Pollution, 148, 10-20  https://doi.org/10.1016/j.envpol.2006.11.016
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti