A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe

https://doi.org/10.17221/932/2014-PSECitation:Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. (2015): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant Soil Environ., 61: 86-96.
download PDF
Phosphorus (P) fertilization is commonly based on soil testing, for which a variety of different soil P extraction methods are in use. The aim of this study was to compare 14 soil P extraction methods in terms of their extraction yield and their relation to soil properties. Fifty contrasting agricultural topsoils were sampled from Austria and Germany. The soils were extracted with the following methods/extractants: H2O, CaCl2, LiCl, Olsen, Bray and Kurtz II (Bray II), Mehlich 3, calcium-acetate-lactate (CAL), iron oxide impregnated filter papers (Fe-oxide Pi), cation and anion exchange membranes (CAEM), acid ammonium oxalate, citrate-bicarbonate-dithionite, HCl, organic P and total P. The extracted P varied over three orders of magnitude and increased in the order H2O < CaCl2 < LiCl < Fe-oxide Pi < Olsen < CAL < CAEM < Mehlich 3 < Bray II < dithionite < organic P < HCl < oxalate < total P. This sequence is in accordance with previous studies and reflects different extraction mechanisms and P pools. The different extraction methods were generally well correlated, especially when P extraction was achieved by a similar mechanism. The soil properties most influential on P extractability were pH, carbonate content, texture as well as iron oxide content and crystallinity. Our results show that the different extraction methods extract distinct pools of soil P with strongly varying extractability, and that the extractability of a given pool may be influenced by different soil properties to different extents. If and how these relationships translate to plant P uptake requires further examination.
References:
Abdu N. (2006): Soil-phosphorus extraction methodologies: A review. African Journal of Agricultural Research, 1: 159–161.
 
Bissani C. A., Tedesco M. J., Camargo F. A. de O., Miola G. L., Gianello C. (): Anion-exchange resins and iron oxide-impregnated filter paper as plant available phosphorus indicators in soils. Communications in Soil Science and Plant Analysis, 33, 1119-1130  https://doi.org/10.1081/CSS-120003876
 
Blume H.-P., Brümmer G.W., Horn R., Kandeler E., Kögel-Knabner I., Kretzschmar R., Stahr K., Wilke B.-M. (2010): Scheffer/Schachtschabel Lehrbuch der Bodenkunde. 16th Ed. Heidelberg, Spektrum Akademischer Verlag.
 
Bortolon Leandro, Gianello Clesio (2012): Multielement Extraction from Southern Brazilian Soils. Communications in Soil Science and Plant Analysis, 43, 1615-1624  https://doi.org/10.1080/00103624.2012.681733
 
BRAY ROGER H., KURTZ L. T. (1945): DETERMINATION OF TOTAL, ORGANIC, AND AVAILABLE FORMS OF PHOSPHORUS IN SOILS. Soil Science, 59, 39-46  https://doi.org/10.1097/00010694-194501000-00006
 
CAMPBELL A. S., SCHWERTMANN U. (1984): Iron oxide mineralogy of placic horizons. Journal of Soil Science, 35, 569-582  https://doi.org/10.1111/j.1365-2389.1984.tb00614.x
 
Chardon W.J. (2000): Methods of phosphorus analysis – Phosphorus extraction with iron oxide-impregnated filter paper (Pi test). In: Pierzynski G. (ed.): Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. Raleigh, North Carolina State University, 27–30.
 
Condron L.M., Tiessen H. (2005): Interactions of organic phosphorus in terrestrial ecosystems. In: Turner B.L., Frossard E., Baldwin D.S. (eds): Organic Phosphorus in the Environment. Wallington, CAB International, 295–307.
 
Cross Anne Fernald, Schlesinger William H. (1995): A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64, 197-214  https://doi.org/10.1016/0016-7061(94)00023-4
 
Csathó Péter, Magyar Marianna, Debreczeni Katalin, Sárdi Katalin (2005): Correlation Between Soil P and Wheat Shoot P Contents in a Network of Hungarian Long‐Term Field Trials. Communications in Soil Science and Plant Analysis, 36, 275-293  https://doi.org/10.1081/CSS-200043081
 
Fernandes M. L., Coutinho J. (1997): Anion and cation exchange resin membranes to assess the phosphorus status of some Portuguese soils. Communications in Soil Science and Plant Analysis, 28, 483-495  https://doi.org/10.1080/00103629709369805
 
Fernandes M. L. V., Indiati R., Coutinho J., Buondonno A. (): Soil properties affecting phosphorus extraction from Portuguese soils by conventional and innovative methods. Communications in Soil Science and Plant Analysis, 30, 921-936  https://doi.org/10.1080/00103629909370257
 
Frank K., Beegle D., Denning J. (1998): Phosphorus. In: Brown J.R. (ed.): Recommended Chemical Soil Test Procedures for the North Central Region. Columbia, North Central Regional Research Publication 221, Missouri Agricultural Experiment Station, 21–30.
 
Holmgren George G. S. (1967): A Rapid Citrate-Dithionite Extractable Iron Procedure1. Soil Science Society of America Journal, 31, 210-  https://doi.org/10.2136/sssaj1967.03615995003100020020x
 
Houba V.J.G., Temminghoff E.J.M., Gaikhorst G.A., van Vark W. (2000): Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31, 1299-1396  https://doi.org/10.1080/00103620009370514
 
Husz Georg (2001): Lithium chloride solution as an extraction agent for soils. Journal of Plant Nutrition and Soil Science, 164, 71-75  https://doi.org/10.1002/1522-2624(200102)164:1<71::AID-JPLN71>3.0.CO;2-1
 
Kulhánek M., Balík J., Černý J., Nedvěd V., Kotková B. (2007): The influence of different intensities of phosphorus fertilizing on available phosphorus contents in soils and uptake by plants. Plant, Soil and Environment, 53: 382–387.
 
Kulhánek M., Balík J., Černý J., Vaněk V. (2009): Evaluation of phosphorus mobility in soil using different extraction methods. Plant, Soil and Environment, 55: 267–272.
 
Kumar Vijay, Bolland M. D. A., Gilkes R. J. (1994): Comparison of the Pi, Colwell, Bray 1, calcium acetate lactate (CAL) and Truog soil phosphorus test for predicting growth of oats, barley, triticale and clover in the field in lateritic soils fertilised with superphosphate and rock phosphate. Fertilizer Research, 37, 115-124  https://doi.org/10.1007/BF00748552
 
Kuo S. (1996): Phosphorus. In: Bartels J.M., Bigham J.M. (eds): Methods of Soil Analysis, 3. Chemical Methods. Madison, Soil Science Society of America, 869–919.
 
Lair G.J., Zehetner F., Hrachowitz M., Franz N., Maringer F.-J., Gerzabek M.H. (2009): Dating of soil layers in a young flood-
 
plain using iron oxide crystallinity. Quaternary Geochronology, 4: 260–266.
 
Mamo Tekalign, Richter C., Heiligtag B. (1996): Comparison of extractants for the determination of available phosphorus, potassium, calcium, magnesium and sodium in some Ethiopian and German soils. Communications in Soil Science and Plant Analysis, 27, 2197-2212  https://doi.org/10.1080/00103629609369697
 
Marschner H. (1995): Mineral Nutrition of Higher Plants. 3rd Ed. San Diego, Academic Press.
 
Mehlich A. (): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416  https://doi.org/10.1080/00103628409367568
 
Mehra O. P. (1958): Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate. Clays and Clay Minerals, 7, 317-327  https://doi.org/10.1346/CCMN.1958.0070122
 
Menon R.G., Chien S.H., Hammond L.L. (1989a): Comparison of Bray I and Pi tests for evaluating plant-available phosphorus from soils treated with different partially acidulated phosphate rocks. Plant and Soil, 114: 211–216.
 
Menon R.G., Chien S.H., Hammond L.L., Henao J. (1989b): Modi-
 
fied techniques for preparing paper strips for the new Pi soil test for phosphorus. Fertilizer Research, 19: 85–91.
 
Menon R. G., Chien S. H., Gadalla Abd el Nabi (1991): Comparison of Olsen and Pi soil tests for evaluating phosphorus bioavailability in a calcareous soil treated with single superphosphate and partially acidulated phosphate rock. Fertilizer Research, 29, 153-158  https://doi.org/10.1007/BF01048954
 
Murphy J., Riley J.P. (1962): A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36  https://doi.org/10.1016/S0003-2670(00)88444-5
 
Myers R. G., Sharpley A. N., Thien S. J., Pierzynski G. M. (2005): Ion-Sink Phosphorus Extraction Methods Applied on 24 Soils from the Continental USA. Soil Science Society of America Journal, 69, 511-  https://doi.org/10.2136/sssaj2005.0511
 
Nuernberg N. J., Leal J. E., Sumner M. E. (1998): Evaluation of an anion‐exchange membrane for extracting plant available phosphorus in soils. Communications in Soil Science and Plant Analysis, 29, 467-479  https://doi.org/10.1080/00103629809369959
 
Olsen S.R., Cole C.V., Watanabe F.S., Dean L.A. (1954): Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, USDA Circular 939, U.S. Government Printing Office, 1–19.
 
Pardo P., López-Sánchez J.F., Rauret G. (2003): Relationships between phosphorus fractionation and major components in sediments using the SMT harmonised extraction procedure. Analytical and Bioanalytical Chemistry, 376: 248–254.
 
Raiswell R., Canfield D.E., Berner R.A. (1994): A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology, 111, 101-110  https://doi.org/10.1016/0009-2541(94)90084-1
 
Ruttenberg K.C. (2009): The global phosphorus cycle. Treatise on Geochemistry, 9: 585–591.
 
Saggar S., Hedley M.J., White R.E., Perrott K.W., Gregg P.E.H., Cornforth I.S., Sinclair A.G. (1999): Development and evaluation of an improved soil test for phosphorus, 3: Field comparison of Olsen, Colwell and resin soil P tests for New Zealand pasture soils. Nutrient Cycling in Agroecosystems, 55: 35–50. https://doi.org/10.1023/A:1009868032532
 
Schlesinger W.H. (1997): Biogeochemistry: An Analysis of Global Change. 2nd Ed. San Diego, Academic Press.
 
Schoenau J.J., O’Halloran I.P. (2007): Sodium bicarbonate-ex-
 
tractable phosphorus. In: Carter M.R., Gregorich E.G. (eds): Soil Sampling and Methods of Analysis. Boca Raton, Canadian Society of Soil Science, Lewis Publishers, 89–94.
 
Schüller H. (1969): Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 123, 48-63  https://doi.org/10.1002/jpln.19691230106
 
Schwertmann U. (1964): Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 105, 194-202  https://doi.org/10.1002/jpln.3591050303
 
Sims J.T. (2000a): Soil test phosphorus: Bray and Kurtz P-1. In: Pierzynski G. (ed.): Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. Raleigh, North Carolina State University, 13–14.
 
Sims J.T. (2000b): Soil test phosphorus: Mehlich 3. In: Pierzynski G. (ed.): Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. Raleigh, North Carolina State University, 17–19.
 
Sims J.T. (2000c): Soil test phosphorus: Olsen P. In: Pierzynski G. (ed.): Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. Raleigh, North Carolina State University, 20–21.
 
Smil Vaclav (2000): PHOSPHORUS IN THE ENVIRONMENT: Natural Flows and Human Interferences. Annual Review of Energy and the Environment, 25, 53-88  https://doi.org/10.1146/annurev.energy.25.1.53
 
Soil Survey Staff (2004): Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report 42. Washington, USDA – NRCS.
 
STEWART J. W. B., O'HALLORAN I. P., KACHANOSKI R. G. (1987): INFLUENCE OF TEXTURE AND MANAGEMENT PRACTICES ON THE FORMS AND DISTRIBUTION OF SOIL PHOSPHORUS. Canadian Journal of Soil Science, 67, 147-163  https://doi.org/10.4141/cjss87-013
 
Tabatabai M.A., Bremner J.M. (1991): Automated instruments for determination of total carbon, nitrogen, and sulfur in soils by combustion techniques. In: Smith K.A. (ed.): Soil Analysis. New York, Marcel Dekker, 261–286.
 
van Raij Bernardo (1998): Bioavailable tests: alternatives to standard soil extractions. Communications in Soil Science and Plant Analysis, 29, 1553-1570  https://doi.org/10.1080/00103629809370049
 
Zbíral Jiří, Němec Pavel (2002): COMPARISON OF MEHLICH 2, MEHLICH 3, CAL, EGNER, OLSEN, AND 0.01 M CaCl 2 EXTRACTANTS FOR DETERMINATION OF PHOSPHORUS IN SOILS. Communications in Soil Science and Plant Analysis, 33, 3405-3417  https://doi.org/10.1081/CSS-120014534
 
Zbíral Jirí (2000): Determination of phosphorus in calcareous soils by mehlich 3, mehlich 2, cal, and egner extractants. Communications in Soil Science and Plant Analysis, 31, 3037-3048  https://doi.org/10.1080/00103620009370648
 
Zehetner Franz, Lair Georg J., Maringer Franz-Josef, Gerzabek Martin H., Hein Thomas (2008): From sediment to soil: floodplain phosphorus transformations at the Danube River. Biogeochemistry, 88, 117-126  https://doi.org/10.1007/s10533-008-9198-3
 
Zehetner &NA;, Wenzel Walter W. (2000): NICKEL AND COPPER SORPTION IN ACID FOREST SOILS. Soil Science, 165, 463-472  https://doi.org/10.1097/00010694-200006000-00002
 
Zheng Z.M., Zhang T.Q. (2012): Soil phosphorus tests and transformation analysis to quantify plant availability: A review. In: Whalen J. (ed.): Soil Fertility Improvement and Integrated Nutrient Management – A Global Perspective. Rijeka, InTech, 19–36.
 
Ziadi N., Sen Tran T. (2007): Mehlich 3-extractable elements. In: Carter M.R., Gregorich E.G. (eds): Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, Boca Raton, Lewis Publishers, 81–88.
 
Zorn W., Krause O. (1999): Untersuchungen zur Charakteri-
 
sierung des pflanzenverfügbaren Phosphats in Thüringer Carbonatböden. Journal of Plant Nutrition and Soil Science, 162: 463–469.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti