Influence of zinc treatments on grain yield and grain quality of different maize genotypes

Stepić V., Cvijanović G., Đurić N., Bajagić M., Marinković J., Cvijanović V. (2022): Influence of zinc treatments on grain yield and grain quality of different maize genotypes. Plant Soil Environ., 68: 223–230.

download PDF

Maize production is intensified with a larger amount of mineral fertilisers in the era of meteorological conditions change, which leads to a decrease in the reserves of microelements in the soil. The aim of this study was to determine the influence of zinc application on grain yield, nitrogen and carbon content in grain of three maize genotypes in the period 2016–2018 (factor A). Factor B: cultivars ZP 427, ZP 548 and ZP 687 belonging to different maturation groups. Factor C: Various zinc treatments were applied: T1 – control; T2 – 25 kg Zn2+/ha (35 g of ZnSO4 on the experimental plot) was introduced into the soil before sowing; T3 – seed treatment (0.129 g of ZnSO4 • 7 H2O) +
foliar treatment (2 L/ha liquid fertiliser 7% Zn2+). The average yield for all examined variables was 7.33 t/ha. On average, T2 (8.08 t/ha) treatment showed a highly significant effect on the yield in relation to T1 (7.03 t/ha) and on T3 (7.21 t/ha). On average, the amount of nitrogen determined for all cultivars was the highest in T3 (1.52%). The highest carbon content was in T1 (41.78%), which is at the level of significance of P < 0.01 more than T2 (41.46%), while in relation to T3 (40.99%) there is no significance.

Abdoli M., Esfandiari E., Mousavi S.B., Sadeghzadeh B. (2014): Effects of foliar application of zinc sulfate at different phenological stages on yield formation and grain zinc content of bread wheat (cv. Kohdasht). Azarian Journal of Agriculture, 1: 11–16.
Abid S., Moazzam J., Maqshoof A., Abbasi G.H., Fakhar-u-Zaman M. (2014): An investigation on nitrogen-zinc interaction synergise maize (Zea mays L.) fodder quality. World Applied Sciences Journal, 31: 91–95.
AOAC (2006): Microchemical Determination of Carbon, Hydrogen, and Nitrogen. Automated Method (Official Method 972.43). 18th Edition. Gaithersburg, Official Methods of Analysis of AOAC International.
Basit A., Hussain S., Abid M., Zafar-Ul-Hye M., Ahmed N. (2021): Zinc and potassium priming of maize (Zea mays L.) seeds for salt-affected soils. Journal of Plant Nutrition, 44: 130–141.
Esper Neto M., Britt D.W., Lara L.M., Cartwright A., dos Santos R.F., Inoue T.T., Batista M.A. (2020): Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. Agronomy, 10: 307.
Ferreira C.F., Vargas Motta A.C., Prior S.A., Reissman C.B., dos Santos N.Z., Gabardo J. (2012): Influence of corn (Zea mays L.) cultivar development on grain nutrient concentration. International Journal of Agronomy, 2012: 1–7.
Harris D., Rashid A., Miraj G., Arif M., Shah H. (2007): "On-farm" seed priming with zinc sulphate solution – a cost-effective way to increase the maize yields of resource-poor farmers. Field Crops Research, 102: 119–127.
IITA (2009): Maize Crop Production. Manual Series. Ibadan, International Institute for Tropical Agricultural.
Imran M., Römheld V., Neumann G. (2017): Accumulation and distribution of Zn and Mn in soybean seeds after nutrient seed priming and its contribution to plant growth under Zn- and Mn-deficient conditions. Journal of Plant Nutrition, 40: 695–708.
Jamil M., Sajad A., Ahmad M., Akhtar M., Abbasi G.H., Arshad M. (2015): Growth, yield and quality of maize (Zea mays L.) fodder as affected by nitrogen-zinc interaction in arid climate. Pakistan Journal of Agricultural Sciences, 52: 637–643.
Johnson S.E., Lauren J.G., Welch R.M., Duxbury J.M. (2005): A comparation of effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Experimental Agriculture, 41: 427–448.
Kabata-Pendias A. (2004): Soil-plant transfer of trace elements – an environmental issue. Geoderma, 122: 143–149.
Kljak K., Duvnjak M., Grbeša D. (2018): Contribution of zein content and starch characteristics to vitreousness of commercial maize hybrids. Journal of Cereal Science, 80: 57–62.
Liu H., Gan W., Rengel Z., Zhao P. (2016): Effects of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize. Journal of Soil Science and Plant Nutrition, 16: 550–562.
Nciizah A.D., Rapetsoa M.C., Wakindiki I.C., Zerizghy M.G. (2020): Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon, 6: e04766.
Potarzycki J., Grzebisz W. (2009): Effect of zinc foliar application on grain yield of maize and its yielding compone. Plant, Soil and Environment, 55: 519–527.
Potarzycki J. (2010): The impact of fertilization systems on zinc management by grain maize. Fertilisers and Fertilization, 39: 78–89.
Rehman A., Farooq M. (2016): Zinc seed coating improves the growth, grain yield and grain biofortification of bread wheat. Acta Physiologiae Plantarum, 38: 238.
Rosegrant M.R., Ringler C., Sulser T.B., Ewing M., Palazzo A., Zhu T., Nelson G.C., Koo J., Robertson R., Msangi S., Batka M. (2009): Agriculture and Food Security under Global Change: Prospects for 2025/2050. Washington, International Food Policy Research Institute, 89.
Ruiz-García Y., Gómez-Plaza E. (2013): Elicitors: a tool for improving fruit phenolic content. Agriculture, 3: 33–52.
Rurinda J., Mapfumo P., van Wijk M.T., Mtambanengwe F., Rufino M.C., Chikowo R., Giller K.E. (2014): Comparative assessment of maize, finger millet and sorghum for household food security in the face of increasing climatic risk. European Journal of Agronomy, 55: 29–41.
Sinha A.K., Kumar V., Makkar H.P.S., De Boeck G., Becker K. (2011): Non-starch polysaccharides and their role in fish nutrition – a review. Food Chemistry, 127: 1409–1426.
Wang S.X., Li M., Liu K., Tian X.H., Li S., Chen Y.L., Jia Z. (2017): Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality. PLoS One, 12: e0181276.
Welch R.M., Graham R.D. (2004): Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55: 353–364.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti