Non-isothermal kinetic analysis of the thermal decomposition of spruce wood in air atmosphere T., Vitázek I., Húlan T., Lawson M., Csáki Š. (2018): Non-isothermal kinetic analysis of the thermal decomposition of spruce wood in air atmosphere. Res. Agr. Eng., 64: 41-46.
download PDF

Thermal decomposition of spruce wood (Picea abies) was studied using the thermogravimetric (TG) analysis in air atmosphere from 30°C to 600°C with the heating rates of 5, 10, 15, 20, 25 and 30°C.min–1. The TG results show that the main decomposition region is in the temperature range of 250–360°C, where a total disintegration of hemicellulose and cellulose with partial lignin decomposition can be observed. The values of apparent activation energy for this process are between 168.6–196.5 kJ·mol–1, 179.8–188.1 kJ·mol–1 and 170.1–178.7 kJ·mol–1 determined by the Friedman, Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods, respectively. 

Akahira T., Sunose T. (1971): Joint convention of four electrical institutes. Research Report, Chiba Institute of Technology, 16: 22–31.
Bilbao R., Mastral J.F., Aldea M.E., Ceamanos J. (1997): Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. Journal of Analytical and Applied Pyrolysis, 39, 53-64
Flynn Joseph H., Wall Leo A. (1966): General treatment of the thermogravimetry of polymers. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 70A, 487-
Friedman Henry L. (1964): Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6, 183-195
Yub Harun Noorfidza, T. Afzal Muhammad (2010): Thermal Decomposition Kinetics of Forest Residue. Journal of Applied Sciences, 10, 1122-1127
Jin Wenjia, Singh Kaushlendra, Zondlo John (2013): Pyrolysis Kinetics of Physical Components of Wood and Wood-Polymers Using Isoconversion Method. Agriculture, 3, 12-32
Kissinger H. E. (1957): Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29, 1702-1706
Mohan D., Pittman C. U., Steele P. H. (2006): Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20: 848–889.
Orfão J.J.M., Antunes F.J.A., Figueiredo J.L. (1999): Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel, 78, 349-358
Ozawa Takeo (1965): A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38, 1881-1886
Poletto Matheus, Zattera Ademir J., Santana Ruth M.C. (2012): Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 126, 7-12
Safi M.J., Mishra I.M., Prasad B. (2004): Global degradation kinetics of pine needles in air. Thermochimica Acta, 412, 155-162
Sbirrazzuoli Nicolas, Vincent Luc, Mija Alice, Guigo Nathanael (2009): Integral, differential and advanced isoconversional methods. Chemometrics and Intelligent Laboratory Systems, 96, 219-226
Shen D.K., Gu S., Luo K.H., Bridgwater A.V., Fang M.X. (2009): Kinetic study on thermal decomposition of woods in oxidative environment. Fuel, 88, 1024-1030
Strezov V., Moghtaderi B., Lucas J.A. (2003): Thermal study of decomposition of selected biomass samples. Journal of Thermal Analysis and Calorimetry, 72: 1041–1048.
Vyazovkin Sergey, Burnham Alan K., Criado José M., Pérez-Maqueda Luis A., Popescu Crisan, Sbirrazzuoli Nicolas (2011): ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520, 1-19
White John E., Catallo W. James, Legendre Benjamin L. (2011): Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91, 1-33
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti