Moisture and thermal diffusivity of lentil seed under convective infrared-microwave: Modelling with and without shrinkage

https://doi.org/10.17221/24/2014-RAECitation:Chayjan R.A., Radmard S.A. (2016): Moisture and thermal diffusivity of lentil seed under convective infrared-microwave: Modelling with and without shrinkage. Res. Agr. Eng., 62: 129-140.
download PDF
The effect of infrared radiation and microwave radiation on the moisture and thermal diffusivity characteristics of lentil seeds during infrared and microwave drying was investigated. Using mathematical equations, values and curves, moisture and thermal diffusivity were obtained. This study was to determine the moisture and thermal diffusivity of seed lentil with and without shrinkage at input temperatures 40°C and 60°C, infrared powers 1,000 W and 2,000 W and microwave power 270 W and 450 W, when the moisture content was reduced from 60 to 9% (d.b.). Drying rate was increased with increased air temperature, infrared radiation and microwave powers. Also drying rate decreased continuously with decreasing moisture content. The calculated values of moisture diffusivity by considering shrinkage were smaller than the values of moisture diffusivity without considering shrinkage. Moisture diffusivity with and without shrinkage decreased with decrease in moisture content of lentil seeds and thermal diffusivity with and without shrinkage decreased with increased moisture content. Both moisture and thermal diffusivity values decreased with increase in temperature.
References:
Souraki B. Abbasi, Mowla D. (2008): Axial and radial moisture diffusivity in cylindrical fresh green beans in a fluidized bed dryer with energy carrier: Modeling with and without shrinkage. Journal of Food Engineering, 88, 9-19  https://doi.org/10.1016/j.jfoodeng.2007.05.013
 
Arévalo-Pinedo Aroldo, Murr Fernanda E.X. (2006): Kinetics of vacuum drying of pumpkin (Cucurbita maxima): Modeling with shrinkage. Journal of Food Engineering, 76, 562-567  https://doi.org/10.1016/j.jfoodeng.2005.06.003
 
ASAE (2007): ASAE Standard S352.2: Moisture measurement-unground grain and seeds, 54th Ed. St. Joseph, USA.
 
Amiri Chayjan Reza, Bahrabad Seyed Majid Tabatabaei, Rahimi Sardari Feizolah (2014): Modeling Infrared-Covective Drying of Pistachio Nuts under Fixed and Fluidized Bed Conditions. Journal of Food Processing and Preservation, 38, 1224-1233  https://doi.org/10.1111/jfpp.12083
 
Crank J. (1975): The mathematics of diffusion (2nd Ed.). Oxford, Oxford University Press.
 
Çağlar Abdullah, Toğrul İnci Türk, Toğrul Hasan (2009): Moisture and thermal diffusivity of seedless grape under infrared drying. Food and Bioproducts Processing, 87, 292-300  https://doi.org/10.1016/j.fbp.2009.01.003
 
Gharibzahedi Seyed Mohammad Taghi, Ghahderijani Mohammad, Lajevardi Zhaleh Sadat (2014): Specific Heat, Thermal Conductivity and Thermal Diffusivity of Red Lentil Seed as a Function of Moisture Content. Journal of Food Processing and Preservation, 38, 1807-1811  https://doi.org/10.1111/jfpp.12151
 
Gürtas F., Ak M., Evranuz E. (2001): Water diffusion coefficients of selected legumes grown in turkey as affected by temperature and variety. Turk Journal Agriculture, 25: 297–304.
 
Hashemi G., Mowla D., Kazemeini M. (2009): Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. Journal of Food Engineering, 92, 331-338  https://doi.org/10.1016/j.jfoodeng.2008.12.004
 
Hassini L., Azzouz S., Peczalski R., Belghith A. (2007): Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79, 47-56  https://doi.org/10.1016/j.jfoodeng.2006.01.025
 
Hatamipour M.S., Mowla D. (2003): Correlations for shrinkage, density and diffusivity for drying of maize and green peas in a fluidized bed with energy carrier. Journal of Food Engineering, 59, 221-227  https://doi.org/10.1016/S0260-8774(02)00461-2
 
Umesh Hebbar H, Rastogi N.K (2001): Mass transfer during infrared drying of cashew kernel. Journal of Food Engineering, 47, 1-5  https://doi.org/10.1016/S0260-8774(00)00088-1
 
Işik E., Izli N., Bayram G., Turgut I. (2011): Drying kinetic and physical properties of green laird lentil (Lens culinaris) in microwave drying. African Journal of Biotechnology, 10: 3841–3848.
 
Janjai S., Bala B.K., Lamlert N., Mahayothee B., Haewsungcharern M., Muhlbauer W., Muller J. (2007): Moisture Diffusivity Determination of Different Parts of Longan Fruit. International Journal of Food Properties, 10, 471-478  https://doi.org/10.1080/10942910600889968
 
Jood S., Bishnoi S., Sharma A. (): Chemical analysis and physico-chemical properties of chickpea and lentil cultivars. Nahrung / Food, 42, 71-74  https://doi.org/10.1002/(SICI)1521-3803(199804)42:02<71::AID-FOOD71>3.3.CO;2-U
 
Kara M., Boydas M.G., Kara Y.A., Ozturk I. (2012): The effect of moisture content on the thermal properties of red lentil. American Society of Agricultural and Biological Engineers, 55: 2301–2306.
 
Karatas Sükrü (1997): Determination of Moisture Diffusivity of Lentil Seed During Drying. Drying Technology, 15, 183-199  https://doi.org/10.1080/07373939708917225
 
Kiranoudis C.T., Maroulis Z.B., Marinos-Kouris D. (1992): MODEL SELECTI0N IN AIR DRYING OF FOODS. Drying Technology, 10, 1097-1106  https://doi.org/10.1080/07373939208916497
 
Khir Ragab, Pan Zhongli, Salim Adel, Hartsough Bruce R., Mohamed Sherief (2011): Moisture diffusivity of rough rice under infrared radiation drying. LWT - Food Science and Technology, 44, 1126-1132  https://doi.org/10.1016/j.lwt.2010.10.003
 
Mariani Viviana Cocco, Barbosa de Lima Antonio Gilson, dos Santos Coelho Leandro (2008): Apparent thermal diffusivity estimation of the banana during drying using inverse method. Journal of Food Engineering, 85, 569-579  https://doi.org/10.1016/j.jfoodeng.2007.08.018
 
Mayor L., Sereno A.M. (2004): Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61, 373-386  https://doi.org/10.1016/S0260-8774(03)00144-4
 
Menkov Nikolay D (2000): Moisture sorption isotherms of lentil seeds at several temperatures. Journal of Food Engineering, 44, 205-211  https://doi.org/10.1016/S0260-8774(00)00028-5
 
Nouri Jangi A., Mortazavi S.A., Tavakoli M., Ghanbari A., Tavakolipour H., Haghayegh G.H. (2011): Comparison of mechanical and thermal properties between two varieties of barley (Hordeum vulgare L.) grains. Australian Journal of Agricultural Engineering, 2: 132–139.
 
Pahlavanzadeh H., Basiri A., Zarrabi M. (2001): DETERMINATION OF PARAMETERS AND PRETREATMENT SOLUTION FOR GRAPE DRYING. Drying Technology, 19, 217-226  https://doi.org/10.1081/DRT-100001363
 
PARK K.J. (1998): DIFFUSIONAL MODEL WITH AND WITHOUT SHRINKAGE DURING SALTED FISH MUSCLE DRYING. Drying Technology, 16, 889-905  https://doi.org/10.1080/07373939808917443
 
Pickles C.A. (2003): Drying kinetics of nickeliferous limonitic laterite ores. Minerals Engineering, 16, 1327-1338  https://doi.org/10.1016/S0892-6875(03)00206-1
 
Rajput M.A., Sarwar G. (1988). Development of high yielding mungbean mutants in Pakistan. Food Legumes Coarse Seed, 5: 3.
 
Roberts John S., Kidd David R., Padilla-Zakour Olga (2008): Drying kinetics of grape seeds. Journal of Food Engineering, 89, 460-465  https://doi.org/10.1016/j.jfoodeng.2008.05.030
 
Samaniego-Esguerra Christine M., Boag Ian F., Robertson Gordon L. (1991): Comparison of regression methods for fitting the GAB model to the moisture isotherms of some dried fruit and vegetables. Journal of Food Engineering, 13, 115-133  https://doi.org/10.1016/0260-8774(91)90014-J
 
Scanlon Martin G., Cenkowski Stefan, Segall Kevin I., Arntfield Susan D. (2005): The Physical Properties of Micronised Lentils as a Function of Tempering Moisture. Biosystems Engineering, 92, 247-254  https://doi.org/10.1016/j.biosystemseng.2005.06.011
 
Senadeera Wijitha, Bhandari Bhesh R, Young Gordon, Wijesinghe Bandu (2003): Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering, 58, 277-283  https://doi.org/10.1016/S0260-8774(02)00386-2
 
Sharma G.P., Verma R.C., Pathare P.B. (2005): Thin-layer infrared radiation drying of onion slices, Journal of Food Engineering, 67: 361–366.
 
J. Tang , S. Sokhansanj (1993): Moisture Diffusivity in Laird Lentil Seed Components. Transactions of the ASAE, 36, 1791-1798  https://doi.org/10.13031/2013.28524
 
Tang J., Sokhansanj S., Sosulski F. (1994): Moisture-Absorption characteristics of laird lentils and hardshell seeds. American Association Cereal Chemists, 71: 423–428.
 
Uddin M.S., Hawlader M.N.A., Hui X. (2004): A comparative study on heat pump, microwave and freeze drying of fresh fruits. In: Proceedings of the 14th International Drying Symposium, São Paulo, Brazil: 2035–2042.
 
Yang W., Sokhansanj S., Tang J., Winter P. (2002): PH—Postharvest Technology. Biosystems Engineering, 82, 169-176  https://doi.org/10.1006/bioe.2002.0066
 
Yadav S.S., Mcneil D.L., Stevenson P.C. (2007): Lentil An Ancient Crop for Modern Times. Dordrecht, Springer, 397–398.
 
Souraki B. Abbasi, Mowla D. (2008): Axial and radial moisture diffusivity in cylindrical fresh green beans in a fluidized bed dryer with energy carrier: Modeling with and without shrinkage. Journal of Food Engineering, 88, 9-19  https://doi.org/10.1016/j.jfoodeng.2007.05.013
 
Arévalo-Pinedo Aroldo, Murr Fernanda E.X. (2006): Kinetics of vacuum drying of pumpkin (Cucurbita maxima): Modeling with shrinkage. Journal of Food Engineering, 76, 562-567  https://doi.org/10.1016/j.jfoodeng.2005.06.003
 
ASAE (2007): ASAE Standard S352.2: Moisture measurement-unground grain and seeds, 54th Ed. St. Joseph, USA.
 
Amiri Chayjan Reza, Bahrabad Seyed Majid Tabatabaei, Rahimi Sardari Feizolah (2014): Modeling Infrared-Covective Drying of Pistachio Nuts under Fixed and Fluidized Bed Conditions. Journal of Food Processing and Preservation, 38, 1224-1233  https://doi.org/10.1111/jfpp.12083
 
Crank J. (1975): The mathematics of diffusion (2nd Ed.). Oxford, Oxford University Press.
 
Çağlar Abdullah, Toğrul İnci Türk, Toğrul Hasan (2009): Moisture and thermal diffusivity of seedless grape under infrared drying. Food and Bioproducts Processing, 87, 292-300  https://doi.org/10.1016/j.fbp.2009.01.003
 
Gharibzahedi Seyed Mohammad Taghi, Ghahderijani Mohammad, Lajevardi Zhaleh Sadat (2014): Specific Heat, Thermal Conductivity and Thermal Diffusivity of Red Lentil Seed as a Function of Moisture Content. Journal of Food Processing and Preservation, 38, 1807-1811  https://doi.org/10.1111/jfpp.12151
 
Gürtas F., Ak M., Evranuz E. (2001): Water diffusion coefficients of selected legumes grown in turkey as affected by temperature and variety. Turk Journal Agriculture, 25: 297–304.
 
Hashemi G., Mowla D., Kazemeini M. (2009): Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. Journal of Food Engineering, 92, 331-338  https://doi.org/10.1016/j.jfoodeng.2008.12.004
 
Hassini L., Azzouz S., Peczalski R., Belghith A. (2007): Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79, 47-56  https://doi.org/10.1016/j.jfoodeng.2006.01.025
 
Hatamipour M.S., Mowla D. (2003): Correlations for shrinkage, density and diffusivity for drying of maize and green peas in a fluidized bed with energy carrier. Journal of Food Engineering, 59, 221-227  https://doi.org/10.1016/S0260-8774(02)00461-2
 
Umesh Hebbar H, Rastogi N.K (2001): Mass transfer during infrared drying of cashew kernel. Journal of Food Engineering, 47, 1-5  https://doi.org/10.1016/S0260-8774(00)00088-1
 
Işik E., Izli N., Bayram G., Turgut I. (2011): Drying kinetic and physical properties of green laird lentil (Lens culinaris) in microwave drying. African Journal of Biotechnology, 10: 3841–3848.
 
Janjai S., Bala B.K., Lamlert N., Mahayothee B., Haewsungcharern M., Muhlbauer W., Muller J. (2007): Moisture Diffusivity Determination of Different Parts of Longan Fruit. International Journal of Food Properties, 10, 471-478  https://doi.org/10.1080/10942910600889968
 
Jood S., Bishnoi S., Sharma A. (): Chemical analysis and physico-chemical properties of chickpea and lentil cultivars. Nahrung / Food, 42, 71-74  https://doi.org/10.1002/(SICI)1521-3803(199804)42:02<71::AID-FOOD71>3.3.CO;2-U
 
Kara M., Boydas M.G., Kara Y.A., Ozturk I. (2012): The effect of moisture content on the thermal properties of red lentil. American Society of Agricultural and Biological Engineers, 55: 2301–2306.
 
Karatas Sükrü (1997): Determination of Moisture Diffusivity of Lentil Seed During Drying. Drying Technology, 15, 183-199  https://doi.org/10.1080/07373939708917225
 
Kiranoudis C.T., Maroulis Z.B., Marinos-Kouris D. (1992): MODEL SELECTI0N IN AIR DRYING OF FOODS. Drying Technology, 10, 1097-1106  https://doi.org/10.1080/07373939208916497
 
Khir Ragab, Pan Zhongli, Salim Adel, Hartsough Bruce R., Mohamed Sherief (2011): Moisture diffusivity of rough rice under infrared radiation drying. LWT - Food Science and Technology, 44, 1126-1132  https://doi.org/10.1016/j.lwt.2010.10.003
 
Mariani Viviana Cocco, Barbosa de Lima Antonio Gilson, dos Santos Coelho Leandro (2008): Apparent thermal diffusivity estimation of the banana during drying using inverse method. Journal of Food Engineering, 85, 569-579  https://doi.org/10.1016/j.jfoodeng.2007.08.018
 
Mayor L., Sereno A.M. (2004): Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61, 373-386  https://doi.org/10.1016/S0260-8774(03)00144-4
 
Menkov Nikolay D (2000): Moisture sorption isotherms of lentil seeds at several temperatures. Journal of Food Engineering, 44, 205-211  https://doi.org/10.1016/S0260-8774(00)00028-5
 
Nouri Jangi A., Mortazavi S.A., Tavakoli M., Ghanbari A., Tavakolipour H., Haghayegh G.H. (2011): Comparison of mechanical and thermal properties between two varieties of barley (Hordeum vulgare L.) grains. Australian Journal of Agricultural Engineering, 2: 132–139.
 
Pahlavanzadeh H., Basiri A., Zarrabi M. (2001): DETERMINATION OF PARAMETERS AND PRETREATMENT SOLUTION FOR GRAPE DRYING. Drying Technology, 19, 217-226  https://doi.org/10.1081/DRT-100001363
 
PARK K.J. (1998): DIFFUSIONAL MODEL WITH AND WITHOUT SHRINKAGE DURING SALTED FISH MUSCLE DRYING. Drying Technology, 16, 889-905  https://doi.org/10.1080/07373939808917443
 
Pickles C.A. (2003): Drying kinetics of nickeliferous limonitic laterite ores. Minerals Engineering, 16, 1327-1338  https://doi.org/10.1016/S0892-6875(03)00206-1
 
Rajput M.A., Sarwar G. (1988). Development of high yielding mungbean mutants in Pakistan. Food Legumes Coarse Seed, 5: 3.
 
Roberts John S., Kidd David R., Padilla-Zakour Olga (2008): Drying kinetics of grape seeds. Journal of Food Engineering, 89, 460-465  https://doi.org/10.1016/j.jfoodeng.2008.05.030
 
Samaniego-Esguerra Christine M., Boag Ian F., Robertson Gordon L. (1991): Comparison of regression methods for fitting the GAB model to the moisture isotherms of some dried fruit and vegetables. Journal of Food Engineering, 13, 115-133  https://doi.org/10.1016/0260-8774(91)90014-J
 
Scanlon Martin G., Cenkowski Stefan, Segall Kevin I., Arntfield Susan D. (2005): The Physical Properties of Micronised Lentils as a Function of Tempering Moisture. Biosystems Engineering, 92, 247-254  https://doi.org/10.1016/j.biosystemseng.2005.06.011
 
Senadeera Wijitha, Bhandari Bhesh R, Young Gordon, Wijesinghe Bandu (2003): Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering, 58, 277-283  https://doi.org/10.1016/S0260-8774(02)00386-2
 
Sharma G.P., Verma R.C., Pathare P.B. (2005): Thin-layer infrared radiation drying of onion slices, Journal of Food Engineering, 67: 361–366.
 
J. Tang , S. Sokhansanj (1993): Moisture Diffusivity in Laird Lentil Seed Components. Transactions of the ASAE, 36, 1791-1798  https://doi.org/10.13031/2013.28524
 
Tang J., Sokhansanj S., Sosulski F. (1994): Moisture-Absorption characteristics of laird lentils and hardshell seeds. American Association Cereal Chemists, 71: 423–428.
 
Uddin M.S., Hawlader M.N.A., Hui X. (2004): A comparative study on heat pump, microwave and freeze drying of fresh fruits. In: Proceedings of the 14th International Drying Symposium, São Paulo, Brazil: 2035–2042.
 
Yang W., Sokhansanj S., Tang J., Winter P. (2002): PH—Postharvest Technology. Biosystems Engineering, 82, 169-176  https://doi.org/10.1006/bioe.2002.0066
 
Yadav S.S., Mcneil D.L., Stevenson P.C. (2007): Lentil An Ancient Crop for Modern Times. Dordrecht, Springer, 397–398.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences