Electronic nose sensor development using ANN backpropagation for Lombok Agarwood classification

https://doi.org/10.17221/26/2020-RAECitation:

Aditama F.A., Zulfikri L., Mardiana L., Mulyaningsih T., Qomariyah N., Wirawan R. (2020): Electronic nose sensor development using ANN backpropagation for Lombok Agarwood classification. Res. Agr. Eng., 66: 97–103.

download PDF

The aim of the present study is the development of an electronic nose system prototype for the classification of Gyrinops versteegii agarwood. The prototype consists of three gas sensors, i.e., TGS822, TGS2620, and TGS2610. The data acquisition and quality classification of the nose system are controlled by the Artificial Neural Network backpropagation algorithm in the Arduino Mega2650 microcontroller module. The testing result shows that an electronic nose can distinguish the quality of Gyrinops versteegii agarwood. The good-quality agarwood has an output of [1 –1], while the poor-quality agarwood has an output of [–1 1].

References:
Adam A.Z., Lee S.Y., Mohamed R. (2017): Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: an emerging contemporary herbal drink. Journal of Herbal Medicine, 10: 37–44. https://doi.org/10.1016/j.hermed.2017.06.002
 
Ahmaed D.T., Mohammed M., Masaad A.M., Tajuddin S.N. (2017): Investigation of agarwood compounds in Aquilaria malaccensis & Aquilaria rostrata chipwood by using solid phase microextraction. Biomedical Journal of Scientific & Technical Research, 1: 1–8.
 
Ali M.M., Hashim N., Aziz A.S., Lasekan O. (2020): Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science & Technology, 99: 1–10.
 
Arshak K., Moore E., Lyons G.M, Harris F., Clifford S. (2004): A review of gas sensors employed in electronic nose applications. Sensor Review, 24: 181–198. https://doi.org/10.1108/02602280410525977
 
Azah M.A.N., Husni S.S., Mailina J., Sahrim L., Majid J.A., Faridz Z.M. (2013): Classification of agarwood (gaharu) by sesin content. Journal of Tropical Forest Science, 25: 213–219.
 
Borah S., Hines E.L., Leeson M.S., Iliescu D.D., Bhuyan M., Gardner J.W. (2008): Neural network based electronic nose for classification of tea aroma. Sensing and Instrumentation for Food Quality and Safety, 2: 7–14. https://doi.org/10.1007/s11694-007-9028-7
 
Dou T.X., Shi J.F., Li Y., Bi F.C., Gao H.J., Hu C.H., Li C.Y., Yang Q.S., Deng G.M., Sheng O., He W.D., Yi G.J., Dong T. (2020): Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Scientia Horticulturae, 265: 1–7. https://doi.org/10.1016/j.scienta.2020.109214
 
Figaro (2000): Operating Principle of MOS Type, Figaro Engineering Inc., Japan., Available at https://www.figaro.co.jp/en/product/sensor/ (accessed Dec 4, 2019).
 
Gamboa J.C.R., Albarracin E.E.S., da Silva A.J., Ferreira T.A.E. (2019): Electronic nose dataset for detection of wine spoilage thresholds. Data in Brief, 25: 1–6.
 
Hashim Y.Z.H-Y., Ismail N.I., Abbas P. (2014): Analysis of chemical compounds of agarwood oil from different species by gas chromatography mass spectrometry (GCMS). IIUM Engineering Journal, 15: 55–60.
 
Hashim Y.Z.H.-Y., Kerr P.G., Abbas P., Salleh H.M. (2016): Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. Journal of Ethnopharmacology, 189: 331–360. https://doi.org/10.1016/j.jep.2016.06.055
 
Ismail N., Ali N.A.M., Jamil M., Rahiman M.H.F., Tajuddin S.N., Taib M.N. (2014): A review study of agarwood oil and its quality analysis. Jurnal Teknologi, 68: 37–42. https://doi.org/10.11113/jt.v68.2419
 
Ismail N., Rahiman M.H.F., Taib M.N., Ibrahim M., Zareen S., Tajuddin S.N. (2015): A Review on agarwood and its quality determination. 2015 IEEE 6th Control and System Graduate Research Colloquium (ICSGRC). Shah Alam, Aug 10–11, 2015: 103–108.
 
Jayachandran K., Sekar I., Parthiban K.T., Amirtham D., Suresh K.K. (2014): Analysis of different of Agarwood (Aquilaria malaccensis Lamk.) oil through GC-MS. Indian Journal of Natural Priducts and Resources, 5: 44–47.
 
Jung D. (2013): The cultural biography of agarwood – perfumery in eastern asia and the asian neighbourhood. Journal of the Royal Asiatic Society, 23: 103–125.
 
Lee S.Y., Mohamed R. (2016): The origin and domestication of Aquilaria, an important agarwood-producing genus. In: Agarwood Science Behind the Fragrance. Singapore, Springer Nature.
 
Lias S., Ali N.A.M., Jamil M., Zainal M.H., Ghani S.H.A. (2015): Classification of pure and mixture agarwood oils by electronic nose and discriminant factorial analysis (DFA). 2015 International Conference on Smart Sensors and Application (ICSSA). Kuala Lumpur, May 26–28, 2015: 7–10.
 
Lias S., Ali N.A.M., Jamil M., Jalil A.M., Othman M.F. (2016): Discrimination of pure and mixture agarwood oils via electronic nose coupled with k-nn kfold classifier. Procedia Cemistry, 20: 63–68. https://doi.org/10.1016/j.proche.2016.07.026
 
Liu Y.Y, Wei J.H., Gao Z.H., Zhang Z., Lyu J.C. (2017):
 
A review of quality assessment and grading for agarwood. Chinese Herbal Medicines, 9: 22–30. https://doi.org/10.1016/S1674-6384(17)60072-8
 
Aqmarina N.A., Siregar U.J., Miftahudin T.M. (2020): Identification of chemical compounds in agarwood-producing species Aquilaria malaccensis and Gyrinops versteegii. Journal of Forestry Research, 31: 1371–1380. https://doi.org/10.1007/s11676-018-00875-9
 
Prasetyo E. (2014): Data Mining, Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta, Andi Offset.
 
Pripdeevech P., Khummueng W., Park S.K. (2011): Identification of odor-active components of agarwood essential oils from Thailand by solid phase microextraction-GC/MS and GC-O. Journal of Essential Oil Research, 23: 46–53. https://doi.org/10.1080/10412905.2011.9700468
 
Sena, S. (2017): Pengenalan Deep Learning Part 3: BackPropagation Algorithm. Available at https://medium.com/@samuelsena (accessed Apr 14, 2020).
 
Subasinghe S.M.C.U.P., Hettiarachchi D.S. (2013): Agarwood resin production and resin quality of Gyrinops walla Gaertn. International Journal of Agricultural Sciences, 3: 357–262.
 
Zulfikri L., Mardiana L., Wirawan R., Qomariyah N., Hadi K.A. (2018): Sistem Deteksi Gas Sederhana untuk Klasifikasi Gaharu Berbasis Sensor Gas Resistif. Prosiding SKF 2018, Bandung, Dec 4, 2018: 69–74.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti