Inactivation of anti-nutrients in soybeans via micronisation

https://doi.org/10.17221/2/2021-RAECitation:

Zubko V., Plavynska S., Plavynskyi V., Plavynska O., Saienko A., Roubík H. (2022): Inactivation of anti-nutrients in soybeans via micronisation. Res. Agr. Eng., 68: 157–167. 

download PDF

The soybean (Glycine max) is used as one of the main protein sources in various animal fodders. However, the presence of anti-nutrients significantly reduces the nutritional value of the bean. To solve this problem, the present work is devoted to the inactivation of the anti-nutrients in soybeans by the use of micronisation as a means of thermal treatment. The purpose of the work is to improve the process of soybean micronisation by determining the impact of the process parameters on the soybean's quality and energy performance, namely – the urease activity and specific energy consumption. A multifactor experiment was carried out using an experimental device for the heat treatment of the beans. The influence of the temperature and time of the heat treatment on the level of inactivation of anti-nutrients and the specific energy consumption for beans with different sizes were established. The modes of heat treatment which allow the inactivation of the anti-nutrients in the soybeans to admissible standard values were also defined. The obtained and studied functional dependencies of the quality and energy indices on the technological factors of the soybean micronisation allow one to improve this process and technical means for its implementation in reducing the anti-nutrient content.

References:
Avilés-Gaxiola S., Chuck-Hernández C., Serna Saldívar S.O. (2018): Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science, 83: 17–29. https://doi.org/10.1111/1750-3841.13985
 
Braginets N.V. (1989): Micronization of grain for fodder purposes. In: Mechanization and Electrification of Agriculture. Moscow, Agropromizdat: 19–31.
 
Cai J-S., Feng J.Y., Ni Z.J., Ma R.H., Thakur K., Wang S., Hu F., Zhang J.G., Wei Z.J. (2021): An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends in Food Science and Technology, 112: 676–689. https://doi.org/10.1016/j.tifs.2021.04.039
 
Chen Y. (2015): Effects of micronization, ethanol washing, and enzymatic hydrolysis processing alone or in combination on trypsin inhibitors, lipoxygenase activities and selected "beany" flavor related compounds in soybean flour. [M.Sc. Thesis]. Manitoba, University of Manitoba.
 
Deepa C., Hebbar H.U. (2016): Effect of high-temperature short-time ‘micronization’ of grains on product quality and cooking characteristics. Food Engineering Reviews, 8: 201–213. https://doi.org/10.1007/s12393-015-9132-0
 
DSTU (2015): DSTU 8365:2015 – Oilcakes and concentrated fodders. Method of urease activity determination. Kiyv, DSTU Ukraine [in Ukrainian].
 
Dudley-Cash W.A. (1999): Methods for determining quality of soybean protein important. Feedstuffs, 71: 10–11.
 
Fasina O.O., Tyler R.T., Pickard M.D. (2001): Effect of infrared heating on properties of legume seeds. International Journal of Food Science & Technology, 36: 79–90.
 
Ferreira S.L., Bruns R.E., Ferreira H.S., Matos G.D., David J.M., Brandão G.C., da Silva E.G., Portugal L.A., dos Reis P.S., Souza A.S., dos Santos W.N. (2007): Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597: 179–86. https://doi.org/10.1016/j.aca.2007.07.011
 
Friedman M., Brandon D.L. (2001): Nutritional and health benefits of soy proteins. Journal of Agricultural and Food Chemistry, 49: 1069–1086. https://doi.org/10.1021/jf0009246
 
Garnsworthy P.C., Wiseman J. (2009): Recent Advances in Animal Nutrition 2008. Nottingham, Nottingham University Press.
 
Irvin E. (1994): Implications of antinutritional components in soybean foods, Critical Reviews in Food Science and Nutrition, 34: 31–67. https://doi.org/10.1080/10408399409527649
 
Leeson S., Summers J.D. (2008): Commercial Poultry Nutrition. Guelph, Nottingham University Press.
 
Lehmali I.F., Jafari M.A. (2019): Effect of different thermal and non-thermal processing methods on chemical composition, quality indicators and apparent mutrient digestibility of full-fat soybean. Brazilian Journal of Poultry Science, 21: 2019–1099.
 
Leterme P., Beckers Y., Thewis A. (1988): Inter- and intravarietal variability of the trypsin inhibitors content of peas and its influence on apparent digestibility of crude protein by growing pigs. In: Huismans J., Van der Poel T.F.J., Liener I.E. (eds): Recent Advances of Research in Antinutritional Factors in Legume Seeds. Wageningen, Pudoc: 121–124.
 
Liener I.E. (1962): Toxic protein from the soybean. II. Physical characterization. The American Journal of Clinical Nutrition, 11: 281–286. https://doi.org/10.1093/ajcn/11.4.281
 
Ligidov V.A. (2007): Efficiency improvement of micronizer with transverse linear infrared emitters in the processing of grain and cereals. [PhD. Thesis]. Moscow, Moscow State University of Food Production [in Russian].
 
Malcolmson L., Han J. (2019): Pulse processing and utilization of pulse ingredients in foods. In: Dahl W.: Health Benefits of Pulses. Cham, Springer: 129–149.
 
Martínez M.L., Marín M.A., Ribotta P.D. (2013): Optimization of soybean heat-treating using a fluidized bed dryer. Journal of Food Science and Technology, 50: 1144–1150. https://doi.org/10.1007/s13197-011-0434-9
 
Melcion J.P., Peel A.F.B. (1993): Process technology and antinutritional factors: Principles, adequacy and process optimization. In: van der Poel A.F.B., Huisman J., Saini H.S. (eds): Recent Advances of Research in Antinutritional Factors in Legume Seeds. Proceeding of 2nd International Workshop on Antinutritional Factors (ANFs) in Legume Seeds. Dec 1–3, 1993, Wageningen, Netherlands: 419–434.
 
Mengesha M. (2016): Maximizing the nutritional value of unprocessed soybean meal through supplementation with complex microbial enzyme products. [PhD. Thesis]. Biddeford, University of New England.
 
Morgunova, N.L., Rudik, F.Y., Semilet N.A., Lovtsova L.G., Ivanova Z.I., Pfeifer S.A. (2020): Technology for reducing urease activity in soybeans. In: IOP Conference Series: Materials Science and Engineering, 862: 062005. https://doi.org/10.1088/1757-899X/862/6/062005
 
Obertukh Y.V. (2003): Development of methods for neutralizing antinutrients of soybean grains when using for feeding purposes. [PhD. Thesis]. Vinnitsa, Institute of Fodders [in Ukrainian].
 
Palacios M.F., Easter R.A., Soltwedel K.T., Parsons C.M., Douglas M.W., Hymowitz T., Pettigrew J.E. (2004): Effect of soybean variety and processing on growth performance of young chicks and pigs. Journal of Animal Science, 82: 1108–1114.
 
Plavynskyi V.I., Saienko A.V., Sarzhanov O.A., Plavynska S.V., Plavynskyi R.A. (2010): Device for heat treatment of soybeans. Patent UA 90123, C2. [in Ukrainian].
 
Qin G., Elst E.R., Bosch M.W., Poel A.F.B. (1996): Thermal processing of whole soya beans: Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets. Animal Feed Science Technology, 57: 313–324. https://doi.org/10.1016/0377-8401(95)00863-2
 
Ruis N. (2013): Activity of urease in soybean meal – A new look. Combined Feed, 10: 59–61.
 
Rui X., Boye J.L., Ribereau S., Simpson B.K., Prasher S.O. (2011): Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseouls vulgaris legume varieties. Food Research International, 44: 2497–2504. https://doi.org/10.1016/j.foodres.2011.01.008
 
Sońta M., Rekiel A. (2020): Legumes – Use for nutritional and feeding purposes. Journal of Elementology, 25: 835–849. https://doi.org/10.5601/jelem.2020.25.1.1953
 
Spiridonov A.A. (1981): Planning an Experiment in the Study of Technological Processes. Moscow, Mashinostroenie [in Russian].
 
Traksler І.S. (2008): Substantiation of rational parameters and operating modes of machines for soybean processing. [PhD. Thesis]. Kyiv, National Agricultural University [in Ukrainian].
 
Vagadia B.H., Vanga S.K., Raghavan V. (2017): Inactivation methods of soybean trypsin inhibitor – A review. Trends in Food Science & Technology, 64: 115–125.
 
White C.E., Campbell D.R., McDowell L.R. (2000): Effects of dry matter content on trypsin inhibitors and urease activity in heat treated soya beans fed to weaned piglets. Animal Feed Science and Technology, 87: 105–115. https://doi.org/10.1016/S0377-8401(00)00168-1
 
Wiriyaumpaiwong S., Soponronnarit S., Prachayawarakorn S. (2004): Comparative study of heating processes for full-fat soybeans. Journal of Food Engineering, 65: 371–382. https://doi.org/10.1016/j.jfoodeng.2004.01.036
 
Yalçın S., Basman A. (2015): Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples. Food Chemistry, 169: 203–210. https://doi.org/10.1016/j.foodchem.2014.07.114
 
Zilic S., Bozovic I., Sukalovic V.H.T. (2012): Thermal inactivation of soybean bioactive proteins. International Journal of Food Engineering, 8: 1556–3758.
 
Zverev S.V., Sesikashvili O.S. (2018): Modelling of urease thermal inactivation processes in soybean at high-temperature micronization. Potravinarstvo, 12: 512–519 [in Slovak]. https://doi.org/10.5219/940
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti