Hydrothermal carbonization of kitchen waste

https://doi.org/10.17221/34/2014-RAECitation:Malaťák J., Dlabaja T. (2016): Hydrothermal carbonization of kitchen waste. Res. Agr. Eng., 62: 64-72.
download PDF
Hydrothermal carbonization is a suitable method for energy and material recovery of wet heterogeneous kitchen waste. The paper examines the ability of the process to produce stable, energy-rich material without harmful by-products from lunch leftovers, raw potatoes, creamy yogurt and raw onions. Results of the batch experiments confirm the hypothesis that waste processing results in homogenous energy-rich (> 24 MJ/kg) and carbon-rich (> 63 % wt.) material. The biochar of creamy yogurt reaches the highest lower-heating value of 31.75 MJ/kg. In terms of energy use and emission concentrations, all samples meet legal requirements for incineration in combustion devices. Phytotoxicity tests prove the harmlessness of the liquid by-product for agricultural purposes.
Antonietti M., Titirici M.M. (2010): Coal from carbohydrates: The “chimie douce” of karbon. Comptes Rendus Chimie, 13: 167−173.
Berge Nicole D., Ro Kyoung S., Mao Jingdong, Flora Joseph R. V., Chappell Mark A., Bae Sunyoung (2011): Hydrothermal Carbonization of Municipal Waste Streams. Environmental Science & Technology, 45, 5696-5703  https://doi.org/10.1021/es2004528
Monier V., Mudgal S., Escalon V., O’Connor C., Gibon T., Anderson G., Montoux H. (2010): Preparatory Study of Food Waste across EU 27. European Commission.
Funke Axel, Ziegler Felix (2011): Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresource Technology, 102, 7595-7598  https://doi.org/10.1016/j.biortech.2011.05.016
Gürdíl G., Malaťák J., Selví K., Pinar Y. (2009): Biomass utilization for thermal energy. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 2: 80–85.
Hwang In-Hee, Aoyama Hiroya, Matsuto Toshihiko, Nakagishi Tatsuhiro, Matsuo Takayuki (2012): Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water. Waste Management, 32, 410-416  https://doi.org/10.1016/j.wasman.2011.10.006
Libra Judy A, Ro Kyoung S, Kammann Claudia, Funke Axel, Berge Nicole D, Neubauer York, Titirici Maria-Magdalena, Fühner Christoph, Bens Oliver, Kern Jürgen, Emmerich Karl-Heinz (2014): Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2, 71-106  https://doi.org/10.4155/bfs.10.81
Lu Xiaowei, Jordan Beth, Berge Nicole D. (2012): Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques. Waste Management, 32, 1353-1365  https://doi.org/10.1016/j.wasman.2012.02.012
Malaťák J., Passian L. (2011): Heat-emission analysis of small combustion equipments for biomass. Res. Agr. Eng., 57: 37–50.
Ramke H.G., Blohse D., Lehmann H.J., Fettig J. (2009): Hydrothermal carbonization of organic waste. In: 20th International Waste Management and Landfill Symposium, Sardinia, October 05–09, 2010: 1–16.
Titirici Maria-Magdalena, Antonietti Markus (2009): Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews, 39, 103-  https://doi.org/10.1039/b819318p
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti