Non-linear control model for use in greenhouse climate control systems

https://doi.org/10.17221/37/2021-RAECitation:

Javadi Moghaddam J., Zarei GH., Momeni D., Faridi H. (2022): Non-linear control model for use in greenhouse climate control systems. Res. Agr. Eng., 68: 9–17. 

supplementary materialdownload PDF

In this study, a non-linear control system was designed and proposed to control the greenhouse climate conditions. This control system directly uses the information of sensors, installed inside and outside the greenhouse. To design this proposed control system, the principles of a non-linear control system and the concepts of equilibrium points and zero dynamics of system theories were used. To show the capability and applicability of the proposed control system, it was compared with an integral sliding mode controller. A greenhouse with similar climatic conditions was used to simulate the performance of the integral sliding mode controller. In this study, it was seen that the integral sliding mode control system was more accurate; however, the actuator signals sent by this control system were not smooth. It could damage and depreciate the greenhouse equipment more quickly than the proposed non-linear control system. It was also shown that the regulation of the temperature and humidity was performed very smoothly by changing the reference signals according to the weather conditions outside the greenhouse. The ability of these two control systems was graphically demonstrated for temperature and humidity responses as well as for the signals sent to the actuators.

References:
Arvantis K.G., Paraskevopoulos P.N., Vernados A.A. (2000): Multirate adaptative temperature control of greenhouses. Computers and Electronics in Agriculture, 26: 303–320. https://doi.org/10.1016/S0168-1699(00)00082-X
 
Boughamsa M., Ramdani M. (2018): Adaptive fuzzy control strategy for greenhouse micro-climate. International Journal of Automation and Control, 12: 108–125. https://doi.org/10.1504/IJAAC.2018.088604
 
Chen L., Du S., He Y., Liang M., Xu D. (2018): Robust model predictive control for greenhouse temperature based on particle swarm optimization. Information Processing in Agriculture, 5: 329–338. https://doi.org/10.1016/j.inpa.2018.04.003
 
Chen W.H., You F. (2019): Efficient Greenhouse temperature control with data-driven robust model predictive. In: Proceedings of American Control Conference (ACC), July 1–3, 2020, Denver, USA: 1986–1991.
 
Coelho J.P., de Moura Oliveira P.B., Cunha J.B. (2005): Greenhouse air temperature predictive control using the particle swarm optimisation algorithm. Computers and Electronics in Agriculture, 49: 330–344. https://doi.org/10.1016/j.compag.2005.08.003
 
Ferreira P.M., Faria E.A., Ruano A.E. (2002): Neural network models in greenhouse air temperature prediction. Neurocomputing, 43: 51–75. https://doi.org/10.1016/S0925-2312(01)00620-8
 
Gaudin V.C. (1981): Simulation and self-adaptive control of a greenhouse. [Ph.D. Thesis]. Nantes, University of Nantes.
 
Ghoumari M.Y., Tantau H.J., Serrano J. (2005): Non-linear constrained MPC: Real-time implementation of greenhouse air temperature control. Computers and Electronics in Agriculture, 49: 345–356. https://doi.org/10.1016/j.compag.2005.08.005
 
Gruber J.K., Guzmán J.L., Rodríguez F., Bordons C., Berenguel M., Sánchez J.A. (2011): Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation. Control Engineering Practice, 19: 354–366. https://doi.org/10.1016/j.conengprac.2010.12.004
 
Hamza A., Ramdani M. (2020): Non-PDC interval type-2 fuzzy model predictive microclimate control of a greenhouse. Journal of Control, Automation and Electrical Systems, 31: 62–72. https://doi.org/10.1007/s40313-019-00532-4
 
Hanan J.J. (1998): Greenhouses: Advanced Technology for Protected Horticulture. New York, CRC Press: 708.
 
Henten E.J. (1994): Greenhouse climate management: An optimal approach. [PhD Thesis]. Wageningen, Institute of Agriculture and Environmental Engineering.
 
Kläring H.P., Hauschild C., Heißner A., Bar-Yosef B. (2007): Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agricultural and Forest Meteorology, 143: 208–216. https://doi.org/10.1016/j.agrformet.2006.12.002
 
Körner O.S.G.V., Van Straten G. (2008): Decision support for dynamic greenhouse climate control strategies. Computers and Electronics in Agriculture, 60: 18–30. https://doi.org/10.1016/j.compag.2007.05.005
 
Lafont F., Balmat J.F. (2004): Fuzzy logic to the identification and the command of the multidimensional systems. International Journal of Computational Cognition, 2: 21–47.
 
Lee C.C. (1990): Fuzzy logic in control systems: Fuzzy logic controller. I. IEEE Transactions on Systems, Man, and Cybernetics, 20: 404–418. https://doi.org/10.1109/21.52551
 
Lees M.J., Taylor J., Chotai A., Young P.C., Chalabi Z.S. (1996): Design and implementation of a proportional-integral-plus (PIP) control system for temperature, humidity and carbon dioxide in a glasshouse. Acta Horticulturae, 406: 115–124. https://doi.org/10.17660/ActaHortic.1996.406.11
 
Márquez-Vera M.A., Ramos-Fernández J.C., Cerecero-Natale L.F., Lafont F., Balmat J.F., Esparza-Villanueva J.I. (2016): Temperature control in a MISO greenhouse by inverting its fuzzy model. Computers and Electronics in Agriculture, 124: 168–174. https://doi.org/10.1016/j.compag.2016.04.005
 
Oueslati L. (1990): Multivariable control of an agricultural greenhouse by minimizing a quadratic criterion. [Ph.D. Thesis]. Toulon, University of Toulon.
 
Pasgianos G.D., Arvanitis K.G., Polycarpou P., Sigrimis N. (2003): A nonlinear feedback technique for greenhouse environmental control. Computers and Electronics in Agriculture, 40: 153–177. https://doi.org/10.1016/S0168-1699(03)00018-8
 
Ramdani M., Hamza A., Boughamsa M. (2015): Multiscale fuzzy model-based short term predictive control of greenhouse microclimate. In: Proceedings of the IEEE 13th International Conference on Industrial Informatics (INDIN), 22–24 July, 2015, Cambdridge, UK: 1348–1353.
 
Ramírez-Arias A., Rodríguez F., Guzmán J.L., Arahal M.R., Berenguel M., López J.C. (2005): Improving efficiency of greenhouse heating systems using model predictive control. IFAC Proceedings Volumes, 38: 40–45. https://doi.org/10.3182/20050703-6-CZ-1902.02097
 
Revathi S., Sivakumaran N. (2016): Fuzzy based temperature control of greenhouse. IFAC-PapersOnLine, 49: 549–554. https://doi.org/10.1016/j.ifacol.2016.03.112
 
Serale G., Fiorentini M., Capozzoli A., Bernardini D., Bemporad A. (2018): Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities. Energies, 11: 631. https://doi.org/10.3390/en11030631
 
Setiawan A., Albright L.D., Phelan R.M. (2000): Application of pseudo-derivative-feedback algorithm in greenhouse air temperature control. Computers and Electronics in Agriculture, 26: 283–302. https://doi.org/10.1016/S0168-1699(00)00081-8
 
Sigrimis N., Antsaklis P., Groumpos P. (2001): Control advances in agriculture and the environment. IEEE Control System Magazine – Special Issue, 21: 8–12.
 
Sigrimis N., Arvanitis K.G., Kookos I.K., Paraskevopoulos P.N. (1999): H∞-PI controller tuning for greenhouse temperature control. IFAC Proceedings Volumes, 32: 5644–5649. https://doi.org/10.1016/S1474-6670(17)56963-3
 
Souissi M. (2002): Climate control and modeling of a greenhouse. [Ph.D. Thesis]. Tunis, University of Tunis.
 
Tap F. (2000): Economics-based optimal control of greenhouse tomato crop production. [Ph.D. Thesis]. Wageningen, Institute of Agriculture and Environmental Engineering.
 
Van Straten G., van Willigenburg G., van Henten E., van Ooteghem R. (2010): Optimal Control of Greenhouse Cultivation. New York, CRC Press: 326.
 
Xia Y., Yang H., Shi P., Fu M. (2010): Constrained infinite-horizon model predictive control for fuzzy-discrete-time systems. IEEE Transactions on Fuzzy Systems, 18: 429–436. https://doi.org/10.1109/TFUZZ.2010.2043441
 
Zou Q., Ji J., Zhang S., Shi M., Luo Y. (2010): Model predictive control based on particle swarm optimization of greenhouse climate for saving energy consumption. In: Proceedings of World Automation Congress, September 19–23, 2010, Kobe, Japan: 123–128.
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti