Temperature changes of I-V characteristics of photovoltaic cells as a consequence of the Fermi energy level shift

https://doi.org/10.17221/38/2015-RAECitation:Libra M., Poulek V., Kouřím P. (2017): Temperature changes of I-V characteristics of photovoltaic cells as a consequence of the Fermi energy level shift. Res. Agr. Eng., 63: 10-15.
download PDF
Current voltage (I-V) characteristic of illuminated photovoltaic (PV) cell varies with temperature changes. The effect is explained according to the solid state theory. The higher the temperature, the lower the open-circuit voltage and the higher the short-circuit current. This behaviour is explained on the basis of band theory of the solid state physics. The increasing temperature causes a narrowing of the forbidden gap and a shift of the Fermi energy level toward the centre of the forbidden gap. Both these effects lead to a reduction of the potential barrier in the band diagram of the illuminated PN junction, and thus to a decrease of the photovoltaic voltage. In addition, narrowing of the forbidden gap causes higher generation of electron-hole pairs in the illuminated PN junction and short-circuit current increases.
References:
Baig H., Sellami N., Mallick T.K. (2015): Performance modeling and testing of a Building Integrated Concentrating Photovoltaic (BICPV) system. Solar Energy Materials & Solar Cells, 134: 29–44.
 
Barukčić M., Hederić Ž., Špoljarić Ž. (2014): The estimation of I–V curves of PV panel using manufacturers’ I–V curves and evolutionary strategy. Energy Conversion and Management, 88, 447-458 https://doi.org/10.1016/j.enconman.2014.08.052
 
Carrero C., Ramírez D., Rodríguez J., Platero C.A. (2011): Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I–V curve. Renewable Energy, 36, 2972-2977 https://doi.org/10.1016/j.renene.2011.04.001
 
Ding Kun, Zhang Jingwei, Bian Xingao, Xu Junwei (2014): A simplified model for photovoltaic modules based on improved translation equations. Solar Energy, 101, 40-52 https://doi.org/10.1016/j.solener.2013.12.016
 
Frank H., Snejdar V. (1976): Principy a vlastnosti polo-vodičových součástek. Prague, SNTL.
 
Hieslmair H., Istratov A.A., Flink C., McHugo S.A., Weber E.R. (1999): Experiments and computer simulations of iron profiles in p/p+ silicon: segregation and the position of the iron donor level. Physica B: Condensed Matter, 273-274, 441-444 https://doi.org/10.1016/S0921-4526(99)00500-1
 
Chemisana D., Ibáñez M., Rosell J.I. (2011): Characterization of a photovoltaic-thermal module for Fresnel linear concentrator. Energy Conversion and Management, 52, 3234-3240 https://doi.org/10.1016/j.enconman.2011.04.008
 
Karatepe Engin, Boztepe Mutlu, Çolak Metin (2007): Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells. Solar Energy, 81, 977-992 https://doi.org/10.1016/j.solener.2006.12.001
 
Kittel Ch. (2005): Introduction to Solid State Physics. John Wiley & Sons, Inc.
 
Kofinas P., Dounis Anastasios I., Papadakis G., Assimakopoulos M.N. (2015): An Intelligent MPPT controller based on direct neural control for partially shaded PV system. Energy and Buildings, 90, 51-64 https://doi.org/10.1016/j.enbuild.2014.12.055
 
Liu Guangyu, Nguang Sing Kiong, Partridge Ashton (2011): A general modeling method for I–V characteristics of geometrically and electrically configured photovoltaic arrays. Energy Conversion and Management, 52, 3439-3445 https://doi.org/10.1016/j.enconman.2011.07.011
 
Orioli Aldo, Di Gangi Alessandra (2013): A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Applied Energy, 102, 1160-1177 https://doi.org/10.1016/j.apenergy.2012.06.036
 
Pikus G.E. (1965): Basic theory of semiconductor devices. Moscow, Nauka.
 
Poulek V., Libra M. (2010): Photovoltaics. Prague, ILSA.
 
Strebkov D.S. (2010): Матричные солнечные элементы, Moscow, ВИЭСХ.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences