The effectiveness of heating of housing unit by renewable energy source

https://doi.org/10.17221/44/2016-RAECitation:Jobbágy J., Krištof K., Andacký M. (2016): The effectiveness of heating of housing unit by renewable energy source. Res. Agr. Eng., 62: S34-S43.
download PDF
The paper is aimed at pointing out possibilities of using of dendromass for heating. The object of interest was heating of housing units with 75.27 m2 of total area. The average value of dendromass moisture was 17.71%. The inserted fireplace Nordica Focolare 70 with a nominal output of 9 kW was used as a heat source. For temperature measurement, a non-contact infrared thermometer GM 900 was used. The total heat loss transferred through walls of housing unit (heat loss through thermal bridges and ventilation losses) were calculated at the value of 176.26 W/K. Based on the results of samples moisture the net calorific value of one kilogram of burned fuel wood was determined (14.791 MJ kg). The amount of thermal energy which is necessary to supply by the heating system for the whole heating period was 14,199.18 kWh. The weight of raw fuel wood was 5,450.97 kg (at moisture of 30%), dried at 17.71% (4,636.87 kg). Price of raw fuel wood of acacia for the year under evaluation was 64.80 €/m3 (the required amount of raw fuel wood for heating period was 10 m3). Total costs for the heating season was thus 648 €. The price of heat transmitted by the fireplace inset Nordica Focolare 70 inserted into heating system using fuel wood (white acacia) with 17.71% of absolute moisture was 0.045636 €/kWh.
References:
Ampatzi Eleni, Knight Ian, Wiltshire Robin (2013): The potential contribution of solar thermal collection and storage systems to meeting the energy requirements of North European Housing. Solar Energy, 91, 402-421  https://doi.org/10.1016/j.solener.2012.09.008
 
Bridgen M.R. (1992): Plantation silviculture of black locust. In: Hanover J.W., Miller K. Pesko S. (eds): Black Locust: Biology, Culture, and Utilization. Proc. International Conference on Black Locust, June 17–21, 1991, East Lansing, Michigan State University, USA: 21–31.
 
Chmúrny I. (2003): Tepelná ochrana budov. Bratislava, Jaga group.
 
Cutz L., Haro P., Santana D., Johnsson F. (2016): Assessment of biomass energy sources and technologies: The case of Central America. Renewable and Sustainable Energy Reviews, 58, 1411-1431  https://doi.org/10.1016/j.rser.2015.12.322
 
Dzurenda L., Geffertová J., Zoliak M. (2010): Energy characteristics of the wood-chip produced from salix viminalis – Clone RAPP. Acta Facultatis Xylologiae, 52: 85−91.
 
Fernandes A. P., Alves C. A., Gonçalves C., Tarelho L., Pio C., Schimdl C., Bauer H. (2011): Emission factors from residential combustion appliances burning Portuguese biomass fuels. Journal of Environmental Monitoring, 13, 3196-  https://doi.org/10.1039/c1em10500k
 
Freitas S., Catita C., Redweik P., Brito M.C. (2015): Modelling solar potential in the urban environment: State-of-the-art review. Renewable and Sustainable Energy Reviews, 41, 915-931  https://doi.org/10.1016/j.rser.2014.08.060
 
Gasol Carles M., Brun Filippo, Mosso Angela, Rieradevall Joan, Gabarrell Xavier (2010): Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe. Energy Policy, 38, 592-597  https://doi.org/10.1016/j.enpol.2009.10.011
 
Harrison W.C., Burkhart H.E., Burk T.E., Beckand D.E. (1986): Growth and Yield of Appalachian Mixed Hardwoods After Thinning. Publication No. FWS-1-86, School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
 
Klašnja B., Orlović S., Galić Z. (2013): Comparison of different wood species as raw materials for bioenergy. Southern Journal of Applied Forestry, 4: 81–88.
 
Kohan Š. (2010): Evaluation of the cultivation of black locust (Robinia pseudoacacia L.) in energy stands under ecological conditions of Medzibodrožie. Forestry Journal, 56: 247–256.
 
M. Kumar, B. B. Verma, R. C. Gupta (1999): Mechanical Properties of Acacia and Eucalyptus Wood Chars. Energy Sources, 21, 675-685  https://doi.org/10.1080/00908319950014425
 
Lattimore Brenna, Smith C. Tattersall, Titus Brian, Stupak Inge, Egnell Gustaf (2013): Woodfuel Harvesting: A Review of Environmental Risks, Criteria and Indicators, and Certification Standards for Environmental Sustainability. Journal of Sustainable Forestry, 32, 58-88  https://doi.org/10.1080/10549811.2011.651785
 
Lieskovský M., Dvořák J., Natov P., Chojnacki J., Rorosz K. (2014): Analysis of woodchip heating capacity calculated according to technical standards and measurements of calorific value. Journal of Forest Science, 60: 451–455.
 
Manzone Marco, Bergante Sara, Facciotto Gianni (2015): Energy and economic sustainability of woodchip production by black locust (Robinia pseudoacacia L.) plantations in Italy. Fuel, 140, 555-560  https://doi.org/10.1016/j.fuel.2014.09.122
 
Manzano-Agugliaro F., Alcayde A., Montoya F.G., Zapata-Sierra A., Gil C. (2013): Scientific production of renewable energies worldwide: An overview. Renewable and Sustainable Energy Reviews, 18, 134-143  https://doi.org/10.1016/j.rser.2012.10.020
 
Nasser Ramadan Abdel-Sayed, Aref Ibrahim M. (2013): Fuelwood Characteristics of Six Acacia Species Growing Wild in the Southwest of Saudi Arabia as Affected by Geographical Location. BioResources, 9, -  https://doi.org/10.15376/biores.9.1.1212-1224
 
Pastorek Z., Kára J., Jevič P. (2004): Biomasa obnoviteľný zdroj energie. Prague, Arch.
 
Piszczalka J., Jobbágy J. (2012): Bioenergetika: zelená energia. Nitra, SUA in Nitra.
 
Piszczalka J., Korenko M., Rutkowski K. (2007): Ocena energetyczno-ekonomiczna ogrzewania dendromasa. Inżynieria Rolnicza, 12: 189–195.
 
Rowell C.E., Carpenter S.B. (1983): Black locust biomass production on Eastern Kentucky strip mines. Southern Journal of Applied Forestry, 7: 27–30.
 
Sovacool Benjamin K. (2012): The political economy of energy poverty: A review of key challenges. Energy for Sustainable Development, 16, 272-282  https://doi.org/10.1016/j.esd.2012.05.006
 
Singh Kripal, Gautam Nitesh Nandini, Singh Bajrang, Goel Vijay L., Patra D.D. (2014): Screening of environmentally less-hazardous fuelwood species. Ecological Engineering, 64, 424-429  https://doi.org/10.1016/j.ecoleng.2014.01.013
 
Stringer J.W., Carpenter S.B., (1986): Energy yield of black locust biomass fuel. Forest Science. 32: 1049–1057.
 
Sharma Chandan, Sharma Ashish K., Mullick Subhash C., Kandpal Tara C. (2015): Assessment of solar thermal power generation potential in India. Renewable and Sustainable Energy Reviews, 42, 902-912  https://doi.org/10.1016/j.rser.2014.10.059
 
Trenčiansky M. (2007): Energetické zhodnotenie biomasy. Zvolen. Národné lesnícke centrum.
 
Varnagiryte-Kabašinskiene I. (2012): Review toward the rational use of forest biomass: Lithuanian case study. Journal of Forest Science. 58: 465–471.
 
Received for publication March 30, 2016
 
Accepted after corrections September 2, 2016
 
Ampatzi Eleni, Knight Ian, Wiltshire Robin (2013): The potential contribution of solar thermal collection and storage systems to meeting the energy requirements of North European Housing. Solar Energy, 91, 402-421  https://doi.org/10.1016/j.solener.2012.09.008
 
Bridgen M.R. (1992): Plantation silviculture of black locust. In: Hanover J.W., Miller K. Pesko S. (eds): Black Locust: Biology, Culture, and Utilization. Proc. International Conference on Black Locust, June 17–21, 1991, East Lansing, Michigan State University, USA: 21–31.
 
Chmúrny I. (2003): Tepelná ochrana budov. Bratislava, Jaga group.
 
Cutz L., Haro P., Santana D., Johnsson F. (2016): Assessment of biomass energy sources and technologies: The case of Central America. Renewable and Sustainable Energy Reviews, 58, 1411-1431  https://doi.org/10.1016/j.rser.2015.12.322
 
Dzurenda L., Geffertová J., Zoliak M. (2010): Energy characteristics of the wood-chip produced from salix viminalis – Clone RAPP. Acta Facultatis Xylologiae, 52: 85−91.
 
Fernandes A. P., Alves C. A., Gonçalves C., Tarelho L., Pio C., Schimdl C., Bauer H. (2011): Emission factors from residential combustion appliances burning Portuguese biomass fuels. Journal of Environmental Monitoring, 13, 3196-  https://doi.org/10.1039/c1em10500k
 
Freitas S., Catita C., Redweik P., Brito M.C. (2015): Modelling solar potential in the urban environment: State-of-the-art review. Renewable and Sustainable Energy Reviews, 41, 915-931  https://doi.org/10.1016/j.rser.2014.08.060
 
Gasol Carles M., Brun Filippo, Mosso Angela, Rieradevall Joan, Gabarrell Xavier (2010): Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe. Energy Policy, 38, 592-597  https://doi.org/10.1016/j.enpol.2009.10.011
 
Harrison W.C., Burkhart H.E., Burk T.E., Beckand D.E. (1986): Growth and Yield of Appalachian Mixed Hardwoods After Thinning. Publication No. FWS-1-86, School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
 
Klašnja B., Orlović S., Galić Z. (2013): Comparison of different wood species as raw materials for bioenergy. Southern Journal of Applied Forestry, 4: 81–88.
 
Kohan Š. (2010): Evaluation of the cultivation of black locust (Robinia pseudoacacia L.) in energy stands under ecological conditions of Medzibodrožie. Forestry Journal, 56: 247–256.
 
M. Kumar, B. B. Verma, R. C. Gupta (1999): Mechanical Properties of Acacia and Eucalyptus Wood Chars. Energy Sources, 21, 675-685  https://doi.org/10.1080/00908319950014425
 
Lattimore Brenna, Smith C. Tattersall, Titus Brian, Stupak Inge, Egnell Gustaf (2013): Woodfuel Harvesting: A Review of Environmental Risks, Criteria and Indicators, and Certification Standards for Environmental Sustainability. Journal of Sustainable Forestry, 32, 58-88  https://doi.org/10.1080/10549811.2011.651785
 
Lieskovský M., Dvořák J., Natov P., Chojnacki J., Rorosz K. (2014): Analysis of woodchip heating capacity calculated according to technical standards and measurements of calorific value. Journal of Forest Science, 60: 451–455.
 
Manzone Marco, Bergante Sara, Facciotto Gianni (2015): Energy and economic sustainability of woodchip production by black locust (Robinia pseudoacacia L.) plantations in Italy. Fuel, 140, 555-560  https://doi.org/10.1016/j.fuel.2014.09.122
 
Manzano-Agugliaro F., Alcayde A., Montoya F.G., Zapata-Sierra A., Gil C. (2013): Scientific production of renewable energies worldwide: An overview. Renewable and Sustainable Energy Reviews, 18, 134-143  https://doi.org/10.1016/j.rser.2012.10.020
 
Nasser Ramadan Abdel-Sayed, Aref Ibrahim M. (2013): Fuelwood Characteristics of Six Acacia Species Growing Wild in the Southwest of Saudi Arabia as Affected by Geographical Location. BioResources, 9, -  https://doi.org/10.15376/biores.9.1.1212-1224
 
Pastorek Z., Kára J., Jevič P. (2004): Biomasa obnoviteľný zdroj energie. Prague, Arch.
 
Piszczalka J., Jobbágy J. (2012): Bioenergetika: zelená energia. Nitra, SUA in Nitra.
 
Piszczalka J., Korenko M., Rutkowski K. (2007): Ocena energetyczno-ekonomiczna ogrzewania dendromasa. Inżynieria Rolnicza, 12: 189–195.
 
Rowell C.E., Carpenter S.B. (1983): Black locust biomass production on Eastern Kentucky strip mines. Southern Journal of Applied Forestry, 7: 27–30.
 
Sovacool Benjamin K. (2012): The political economy of energy poverty: A review of key challenges. Energy for Sustainable Development, 16, 272-282  https://doi.org/10.1016/j.esd.2012.05.006
 
Singh Kripal, Gautam Nitesh Nandini, Singh Bajrang, Goel Vijay L., Patra D.D. (2014): Screening of environmentally less-hazardous fuelwood species. Ecological Engineering, 64, 424-429  https://doi.org/10.1016/j.ecoleng.2014.01.013
 
Stringer J.W., Carpenter S.B., (1986): Energy yield of black locust biomass fuel. Forest Science. 32: 1049–1057.
 
Sharma Chandan, Sharma Ashish K., Mullick Subhash C., Kandpal Tara C. (2015): Assessment of solar thermal power generation potential in India. Renewable and Sustainable Energy Reviews, 42, 902-912  https://doi.org/10.1016/j.rser.2014.10.059
 
Trenčiansky M. (2007): Energetické zhodnotenie biomasy. Zvolen. Národné lesnícke centrum.
 
Varnagiryte-Kabašinskiene I. (2012): Review toward the rational use of forest biomass: Lithuanian case study. Journal of Forest Science. 58: 465–471.
 
Received for publication March 30, 2016
 
Accepted after corrections September 2, 2016
 
download PDF

© 2020 Czech Academy of Agricultural Sciences