Retroreflection of traffic signing for the safe operation of agricultural machinery

Hrabánek L.J., Růžička M. (2022): Retroreflection of traffic signing for the safe operation of agricultural machinery. Res. Agr. Eng., 68: 1–8.

download PDF

Recent studies have discussed the increasing number of accidents caused by agricultural machinery and tractors, specifically on higher-class roads. High-quality traffic signage with the required retroreflection can prevent these serious accidents, especially under reduced visibility conditions. The retroreflective materials are divided into three classes: RA1, RA2 and RA3 according to their optical performance. This distribution apparently turned out to be insufficient, as significantly different optical materials may be assigned to the same class. This research focused on the detailed optical resolution of retroreflecting sheeting with the aim to support enhancement of the current standards. The coefficient of retroreflection (CR) was measured under standard requirements. It was concluded that the combination of 3M 3930 sheeting (CR = 7.81) and 3M 4090 (CR = 9.03) sheeting is not recommended, as the difference between these values and the other monitored samples is significantly higher than CR = 2. Especially with the introduction of autonomous mobility, the recognition of signs will also have fundamental effects on agricultural technologies, where elements of independent mobility will be gradually introduced.

3M (2008): Visibility & Safety for the Life of the Road. [Dataset]. Available at (accessed Oct 1, 2021)
Amparano F.E., Morena D.A. (2006): Marking the way to greater safety. Public Roads, 70: 52–60.
Boggs W., Heaslip K., Louisell C. (2013): Analysis of sign damage and failure: Utah case study. Transportation Research Record, 2337: 83–89.
Borowsky A., Shinar D., Parmet Y. (2008): Sign location, sign recognition, and driver expectancies. Transportation Research Part F: Traffic Psychology and Behaviour, 11: 459–465.
Carlson P.J., Hawkins Jr. H.G. (2002): Minimum retroreflectivity for overhead guide signs and street name signs. Transportation Research Record, 1794: 38–48.
Casado-Sanz N., Guirao B., Gálvez-Pérez D. (2019): Population ageing and rural road accidents. Analysis of accident severity in traffic crashes with older pedestrians on Spanish crosstown roads. Research in Transportation Business and Management, 30: 1–12.
Chao C.W., Huang C.H., Tsai T. (2013): The age effects of traffic signs on visual performance. Life Science Journal, 10: 297–302.
ČSN EN 12899-1 (2008): Stálé svislé dopravní značení – Část 1: Stálé dopravní značky. ICS 93.080.30. Praha: ÚNMZ.
EOTA – European Organisation for Technical Assessment (2016): Microprismatic retro-reflective sheetings. European Technical Assessment (ETA). [Dataset]. Available at (accessed Oct 1, 2021)
Eurostat (2017): Key Figures on Europe – 2017 Edition. [Dataset]. Available at (accessed Oct 1, 2022)
Federal Highway Administration (2012): Minimum Sign Retroreflectivity Requirments. [Dataset]. Available at (accessed Sep 29, 2021).
Hawkins Jr. H.G., Carlson P.J., Chrysler S.T. (2005): Headlamp luminous intensity matrix adjustment factors for modeling traffic sign performance. Journal of Passenger Car: Mechanical Systems Journal, 114: 1960–1973.
Howe S.J. (2006): Assessment of traffic signs for retroreflectivity. In: Proceedings of the 1st World Congress on Engineering Asset Management. Gold Coast, Australia, July 11–14, 2006: 1080–1089.
Hummer J.E., Harris E.A., Rasdorf W. (2013): Simulation-based evaluation of traffic sign retroreflectivity maintenance practices. Journal of Transportation Engineering, 139: 556–564.
Institute of Health Information and Statistics of the Czech Republic (2014): Evropské výběrové šetření o zdraví [Dataset]. Available at (accessed Sept 20, 2021). (in Czech)
Khalilikhah M., Heaslip K. (2016): Analysis of factors temporarily impacting traffic sign readability. International Journal of Transportation Science and Technology, 5: 60–67.
Kühn M, Bende J. (2011): Risiko von Traktoren im Straßenverkehr. [Dataset]. Available at (accessed Oct 1, 2021). (in German)
Lee S.B., Lee C.G., Hong I.K. (2015): Design of MMA-type thermosetting road markings to improve reflectivity. Applied Chemistry for Engineering, 26: 439–444.
Luger E. (2020): Tödliche Traktorunfälle [Dataset]. Available at (accessed Oct 1, 2021). (in German)
Ministry of Transportation of the Czech Republic (2015): TP 66 – Zásady pro označování pracovních míst na pozemních komunikacích. Praha, Ředitelství silnic a dálnic ČR: 1–160. (in Czech)
Nowotny T.K., Velinsky S.A., Lasky T.A., Donohoe S.P. (2012): Test driven design of a system for removing graffiti from retroreflective signs. Mechanics Based Design of Structures and Machines, 40: 366–379.
Obeidat M., Rys M., Russell E.R. (2015): Overhead Guide Sign Retroreflectivity and Illumination. Topeka, Kansas State University Transportation Center: 1–144.
Paniati J.F. (1989): Retroreflectivity research to enhance driver safety. TR News, 140: 13–15.
Pigner M. (1997): Serigraphs of retroreflective retroreflective sheetings for traffic signs: Study of the influence of manufacturing parameters on final quality. Bulletin des Laboratoires des Ponts et Chaussees, 207: 33–43. (in French)
Prášil M. (2006): Svislé dopravní značení. Praha, Ředitelství silnic a dálnic ČR: 2–10. (in Czech)
Schnell T., Yekhshatyan L., Daiker R. (2009): Effect of luminance and text size on information acquisition time from traffic signs. Transportation Research Record, 2122: 52–62.
Sørensen K. (2011): Durability test of retro-reflecting materials for traffic signs at Nordic test sites – Ageing model for the retro-reflectivity after further exposure. Nordisk Møde for Forbedret Vejudstyr, NMF: 1–13.
United Nations Secretariat (2008): Population Prospects. [Dataset]. Available at (accessed Oct 1, 2021)
Woltman H.L. (1984): Sign maintenance management. Transportation Research Record, 979: 24–28.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti