Uncertainty estimation of the mean specific heat capacity for the major gases contained in biogas

https://doi.org/10.17221/4/2020-RAECitation:Travnicek P., Vitázek I. (2020): Uncertainty estimation of the mean specific heat capacity for the major gases contained in biogas. Res. Agr. Eng., 66: 52-59.
download PDF

The paper is focused on the uncertainty estimation of the mean isobaric and isochoric specific heat capacity calculation. The differences in the data among the individual sources for the technical calculation are presented in the first part of the paper. These differences are discussed in this paper. Research of scientific work with listed values of measurement uncertainties has been carried out in the second part of the paper. Furthermore, mathematical models were calculated which describe the dependence of the specific heat capacities and temperature. The maximal error models were carried out. Two approaches were used for the calculation of the mean specific heat capacity. The first approach is the calculation with help of integration of the function which describes the dependence of the specific heat capacity and temperature. The second approach is the calculation of a simple arithmetic mean of the specific heat capacity related to the maximal and minimal value of the temperature interval. The conclusion of the work shows that the time-effective second way is applicable in the case of a narrow temperature range. A value of 5.5% (Δt = 200 K) was reached for the relative uncertainty. This is a similar value to that in the case of using the first way.

References:
Adamovský R., Adamovský D., Herák D. (2004): Exergy of heat flows of the air-to-air plate heat exchanger. Research in Agriculture Engineering, 50: 130–135.  https://doi.org/10.17221/4939-RAE
 
Brož J., Roskovec V., Valouch M. (1980): Fyzikální a Matema-
 
tické Tabulky. Praha, Státní nakladatelství technické literatury.
 
Chyský J. (1977): Vlhký Vzduch. Praha, Státní nakladatelství technické literatury.
 
Cihelka J. (1969): Vytápění a Větrání. Praha, Státní nakladatelství technické literatury.
 
Dordain L., Coxam J.Y., Quint J.R., Grolier J.P.E. (1995): Isobaric heat capacities of carbon dioxide and argon between 323 and 423 K and at pressures up to 25 MPa. The Journal of Supercritical Fluids, 8: 228–235. https://doi.org/10.1016/0896-8446(95)90035-7
 
Engineering Toolbox: Air – Specific Heat at Constant Temperature and Varying Pressure. Available at https://www.engineeringtoolbox.com/air-specific-heat-various-pressures-d_1535.html (accessed Sept 1, 2019).
 
Groda B. (1991): Termomechanika a hydromechanika – termodynamické tabulky. VŠZ v Brně, Brno. Available at http://uzpet.af.mendelu.cz/wcd/w-af-uzpet/soubory-ke-stazeni/tabulky_groda_sken.pdf (accessed Sept 1, 2019).
 
Hála E., Reiser A. (1971): Fyzikální Chemie 1. Praha, Academia.
 
Jastržembskij A.S. (1954): Technická Termodynamika. Praha, Státní nakladatelství technické literatury.
 
JCGM (2008): Evaluation of measurement data — Guide to the expression of uncertainty in measurement. Available at https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed Sept 1, 2019).
 
Kagawa N., Matsuguchi A., Yamaya K., Watanabe K. (2011): Measurement of isobaric heat capacity of R125. International Journal of Refrigeration, 34: 275–279. https://doi.org/10.1016/j.ijrefrig.2010.08.009
 
Kagawa N., Matsuguchi A., Yamaya K., Watanabe K. (2012): Measurements of isobaric heat capacity of R32. International Journal of Refrigeration, 35: 1014–1020. https://doi.org/10.1016/j.ijrefrig.2012.01.023
 
Kalčík J. (1963): Technická Termodynamika. Praha, Nakladatelství Československé akademie věd.
 
Kubota H., Sotani T., Kunimoto Y. (1995): Isobaric specific heat capacity of difluoromethane at pressure up to 0.5 MPa. Fluid Phase Equilibria, 104: 413–419.  https://doi.org/10.1016/0378-3812(94)02665-N
 
Magee J.W. (1994): Molar heat capacity at constant volume for air from 67 to 300 K at pressures to 35 MPa. International Journal of Thermophysics, 15: 849–861.  https://doi.org/10.1007/BF01447098
 
Magee J.W., Outcalt L., Ely J.F. (2000): Molar heat capacity Cv, vapor pressure, and (p, ρ, T) measurements from 92 to 350 K at pressures to 35 MPa and a new equation of state for chlorotrifluoromethane (R13). International Journal of Thermophysics, 21: 1097–1121. https://doi.org/10.1023/A:1026446004383
 
Mikulčák J., Krkavec L., Klimeš B., Bartůněk J., Široký J., Pauková M. (1970): Matematické, fyzikální a chemické tabulky. Praha, Státní pedagogické nakladatelství.
 
Osborne S.N., Stimson H.F., Sligh T.S. (1924): A flow calorimeter for specific heats of gases. Scientific Papers of the Bureau of Standards, 20: 119–151. https://doi.org/10.6028/nbsscipaper.187
 
Pavelek M., Janotková E., Sekanina B., Kavička F., Jícha M. (2003): Termomechanika. Brno, CERM.
 
Ražnjevič K. (1969): Tepelné tabulky a diagram. Bratislava, Alfa.
 
Vdoleček F., Palenčár R., Halaj M. (2001): Nejistoty v měření II – nejistoty přímých měření. Automa, 10: 52–56.
 
Vestfálová M., Šafařík P. (2016): Dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature. EPJ Web of Conferences: 114. doi: 10.1051/epjconf/201611402133 https://doi.org/10.1051/epjconf/201611402133
 
Vitázek I., Klúčik J., Uhrinová D., Mikulová Z., Mojžiš M. (2016): Thermodynamics of combustion gases from biogas. Research in Agriculture Engineering, 62: S8–S13.
 
Vitázek I., Klúčik J., Jablonický J., Vereš P. (2016b): Ideal cycle of combustion engine with natural gas as a fuel. Research in Agriculture Engineering, 62: S14–S20. https://doi.org/10.17221/35/2016-RAE
 
Vohlídal J., Julák A., Štulík K. (1999): Chemické a analytické tabulky. Praha, Grada Publishing.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences