Thin layer mathematical modelling of white maize in a mobile solar-biomass hybrid dryer

Akowuah J.O., Bart-Plange O., Dzisi K.A. (2021): Thin layer mathematical modelling of white maize in a mobile solar-biomass hybrid dryer. Res. Agr. Eng., 67: 74–83.

download PDF

Performance of a tractor mounted solar-biomass hybrid dryer which utilise combined energy of solar and biomass was investigated. Drying behaviour of maize grains in the dryer was also investigated using 10 thin-layer mathematical models. The models were compared based on coefficient of determination (R2) and root mean square error (RMSE) values between experimental and predicted moisture ratios. Moisture content (MC) of grains in the dryer reduced from 19 ± 0.86% to 13 ± 0.4% (w.b.) in 5 h, compared to grains dried in open-sun which reached same MC in 15 hours. This resulted in average drying rate of 1.2 %·h–1 compared to 0.4 %·h–1 for grains dried in the open-sun leading to net savings in drying time of 67%. Overall mean temperature, 41.93 ± 2.7 °C in the dryer was 15.3 °C higher than the ambient temperature. Midilli Kucuk model was best to describe the thin-layer drying kinetics of maize in the dryer. It showed a good fit between the predicted and experimental data. The effective moisture diffusivity of grains dried in the dryer ranged between 1.45 × 10–11 m2·s–1 – 3.10 × 10–11 m2·s–1. An activation energy of 96.83 kJ·mol–1 was determined based on the Arrhenius-type equation.

Achint S., Ambrose R.P.K, Maier D. (2017): CFD simulation of corn drying in a natural convection solar dryer. Drying Technology, 36: 859–870.
Agbossou K., Napo K., Chakraverty S. (2016): Mathematical modelling and solar tunnel drying characteristics of yellow maize. American Journal of Food Science and Technology, 4: 115–124.
Amer B.M.A., Hossain M.A., Gottschalk K. (2010): Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conversion and Management, 51: 813–820.
Bal L.M., Kar A., Satya S. (2010): Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying. International Journal of Food Science & Technology, 45: 2321–2328.
Doymaz I. (2010): Drying of thyme (Thymus vulgaris L.) and selection of a suitable thin-layer drying model. Journal of Food Processing and Preservation, 35: 458–465.
Doymaz I. (2008): Drying of leek slices using heated air. Journal of Food Process Engineering, 31: 721–737.
Doymaz I., Ismail O. (2010): Drying and rehydration behaviours of green bell peppers. Food Science and Biotechnology, 19: 1449–1455.
Doymaz I., Ismail O. (2011): Drying characteristics of sweet cherry. Food and Bioproducts Processing, 89: 31–38.
Erbay Z., Icier F. (2009): A review of thin layer drying of foods: Theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50: 441–464
Ertekin C., Firat M.Z. (2017): A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57: 701–717.
Geramitcioski T., Mitrevski V. (2011): Design and construction of a new mobile solar dryer: Second International Conference Sustainable Postharvest and Food Technologies INOPTEP. Velika Plana, April 17–20, 2011: 24–26.
Hussein J.B., Filli K.B., Oke M.O. (2016): Thin layer modelling of hybrid, solar and open sun drying of tomato slices. Research Journal of Food Science and Nutrition, 1: 15–27.
Jangam S.V., Joshi V.S., Mujumdar A.S., Thorat B.N. (2008): Studies of dehydration of sapota (Achras zapota). Drying Technology, 26: 369–377.
Kaaya A.N., Kyamukangire W. (2010): Drying maize using biomass-heated natural convection dryer improves grain quality during storage. Journal of Applied Science, 10: 967–974.
Kara C., Doymaz I. (2014): Effective moisture diffusivity determination and mathematical modelling of drying curves of apple pomace. Heat Mass Transfer, 51: 7.
Koua K.B., Fassinou W.F., Gbaha P, Toure S. (2009): Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy, 34: 1594–1602.
Lemus-Mondaca R., Betoret N., Vega-Galvez A. (2009): Dehydration characteristics of papaya (Carica pubenscens): Determination of equilibrium moisture content and diffusion coefficient. Journal of Food Process Engineering, 32: 645–663.
MOFA (2011): Statistics, Research and Information Directorate (SRID). Agriculture in Ghana, Facts and Figures. Accra, Ministry of Food and Agriculture.
Nag S., Dash K.K. (2016): Mathematical modeling of thin layer drying kinetics and moisture diffusivity study of elephant apple. International Food Research Journal, 23: 2594–2600.
Simate I.N. (2001): Simulation of the mixed-mode natural-convection solar drying of maize. Drying Technology, 19: 1137–1155.
Suherman B.F., Satriadi H., Yuariski O., Nugroho R.S., Shobib A. (2012): Thin layer drying kinetics of roselle. Advance Journal of Food Science and Technology, 4: 51–55.
Togrul T., Pehlivan D. (2004): Modeling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65: 413–425.
Tonui K.S., Mutai E.B.K., Mutuli D.A., Mbuge D.O., Too K.V. (2014): Design and evaluation of solar maize grain dryer with a back-up heater. Research Journal of Applied Sciences, Engineering and Technology, 7: 3036–3043.
Vega-Galvez A., San Martín R., Sanders M., Miranda M.. Lara E. (2010): Characteristics and mathematical modeling of convective drying of Quinoa (Chenopodium quinoa Willd.): Influence of temperature on the kinetic parameters. Journal of Food Processing, 34: 945–963.
Zenoozian M.S., Feng H., Razavi S.M.A. (2008): Image analysis and dynamic modeling of thin-layer drying of osmotically dehydrated pumpkin. Journal of Food Process, 32: 88–102.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti