Risk analysis of the business profitability in agricultural companies using combine harvesters

https://doi.org/10.17221/63/2016-RAECitation:Miroslav M., Miroslav K., Frantisek K. (2017): Risk analysis of the business profitability in agricultural companies using combine harvesters. Res. Agr. Eng., 63: 99-105.
download PDF
This article presents the results of entrepreneurial risk analysis in a company providing agricultural services where a group of combine harvesters is used. An economic model was created in order to emulate the operational costs of the combine harvesters using MS Excel. Based on the results of the sensitivity analysis, the key factors were determined. For these factors, the risk of achieving the desired economic results was created subsequently. For the simulated situation, the key factors were activated within the range of ± 10% using a triangular distribution of these values. The result of this analysis showed that the most frequent value of CZK 389,692/year will be achieved with a probability of 49.42%. The overall outcome of the combine harvesters should be profitable. 
References:
Calcante A., Fontanini L., Mazzetto F. (2013): Coefficients of repair and maintenance costs of self-propelled combine harvesters in Italy. Agricultural Engineering International: CIGR Journal, 15: 141–147.
 
Figueira J., Greco S., Ehrgott M. (2005): Multiple criteria decision analysis: state of the art surveys. New York, Springer.
 
Fischburn, P.C. (1997): Mean-risk analysis with risk associated with below-target returns. The American Economic Review, 67: 116–126.
 
Fotr J. (2012): Tvorba strategie a strategické plánování: teorie a praxe. 1st Ed. Prague, Grada Publishing.
 
Fotr J., Souček I. (2010): Investiční rozhodování a řízení projektů. 1st Ed. Prague, Grada Publishing.
 
Fotr J., Švecová L. (2010): Manažerské rozhodování: postupy, metody a nástroje. 2nd Rev. Ed. Prague, Ekopress.
 
Gleißner W., Berger T. (2004): Die Ableitung von Kapitalkostensätzen aus dem Risikoinventar eines Unternehmens. In: UM – Unternehmensbewertung & Management, April, 2004: 143–47.
 
Kahneman Daniel, Tversky Amos (1979): Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47, 263-  https://doi.org/10.2307/1914185
 
Koenker Roger, Hallock Kevin F (2001): Quantile Regression. Journal of Economic Perspectives, 15, 143-156  https://doi.org/10.1257/jep.15.4.143
 
Koenker R., Zhao Q. (1996): Conditional quantile estimation and inference for arch models. Econometric Theory. Cambridge University Press, 12: 793–813.
 
Lam J. (2003): Enterprise Risk Management: From Incentives to Controls. Hoboken New Jersey, John Wiley & Sons.
 
Pulkrábek J., Kavka M., Rataj V., Humpál J., Nozdrovický L., Trávníček Z., Pačuta V. (2012): The assessment of the economic risk level of sugar beet growing for the farm economy. Agricultural Economics – Czech, 58: 39–46.
 
Purvis A., Boggess W. G., Moss C. B., Holt J. (1995): Technology Adoption Decisions under Irreversibility and Uncertainty: An Ex Ante Appproach. American Journal of Agricultural Economics, 77, 541-551  https://doi.org/10.2307/1243223
 
Schoemaker J. (2002): Profiting from Uncertainty. Strategies for Succeeding No Matter What the Future Brings. New York, The Free Press.
 
Tozer R.P. (2009): Uncertainty and investment in precision agriculture – Is it worth the money? Agricultural Systems, 100: 80–87.
 
Vose D. (2008): Risk Analysis: A Quantitative Guide. 3rd Ed. USA, John Wiley & Sons.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences