A study of nanomaterial transportation in the soil by finite difference approximations

https://doi.org/10.17221/71/2019-RAECitation:

Nóbrega J.A., Hortelan A.L.S., Portezani C.H., Botero E.R. (2020): A study of nanomaterial transportation in the soil by finite difference approximations. Res. Agr. Eng., 66: 146–155. 

download PDF

Although there has been an increase in the production and use of nanomaterials; few studies have analysed their contact with the environment and the consequent effects on an ecosystem's health, ranging from the impact on the growth of organisms to the contamination of water reservoirs. This work proposes a tool to study the transportation of nanomaterials in the soil by the finite difference method, modelling the dispersion of nanomaterials into the soil layers to estimate the environmental impact. The model validation was conducted through numerical simulations of manganese and zinc in contact with a compacted latosol. The results show that the nanoparticle pollutants move slowly through the layers and the highest concentration is found close to the source. Also, the Mn nanoparticles are in higher concentration than Zinc nanoparticles as a function of depth in the soil layers. The method generates more accurate simulated results in less time and provides a low-cost prediction of the environmental impact. Furthermore, the estimated environmental impacts can be used as a first approximation for the mitigation of the degraded area.

References:
Alvares V.H., Alvarez G.A.M. (2009): Grandezas, Dimensões, Unidades (SI) e Constantes Utilizadas em Química e Fertilidade do Solo. Viçosa, Editora Produção Independente: 86.
 
Ramos R.R., Rodríguez B.S., Mayor A.S., Delgado M.A.R., (2019): Nanomaterials as alternative dispersants for the multiresidue analysis of phthalates in soil samples using matrix solid phase dispersion prior to ultra-high performance liquid chromatography tandem mass spectrometry: Chemosphere, 236: 124377. https://doi.org/10.1016/j.chemosphere.2019.124377
 
Arias M., Pérez-Novo C., Osorio F., López E., Soto B. (2005): Absorption and desorption of cooper and zinc in the surface layer of acid soils. Journal of Colloid and Interface Science. 288: 21–29.  https://doi.org/10.1016/j.jcis.2005.02.053
 
Azevedo I.C.D., Nascentes R.C., Matos T.A., Azevedo F.R. (2005): Determinação de parâmetros de transporte de metais pesados em Latossolo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental, 9: 623–630.  https://doi.org/10.1590/S1415-43662005000400028
 
Bai C., Li Y. (2012): Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios. Journal of Contaminant Hydrology, 136–137: 43–55. https://doi.org/10.1016/j.jconhyd.2012.04.008
 
Boscov M.E.G., Abreu R.C. (2000): Aterros Sanitários – Previsão de Desempenho x Comportamento Real. São Paulo, ABMS/NRSP: 139.
 
Braga Filho W. (2012): Fenômenos de Transporte para Engenharia. São Paulo, Editora LTC: 856.
 
Costa S.N. (1998): Desenvolvimento de um modelo numérico para simulação do transporte de água e solutos no solo sob condições de escoamento não permanente na vertical [Ph.D. thesis]. Viçosa, Universidade Federal de Viçosa: 153.
 
Fang J., Xu M.J., Wang D., Wen B., Han J. (2013): Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: Effects of ionic strength and pH. Water Research, 47: 1399–1408.  https://doi.org/10.1016/j.watres.2012.12.005
 
Fetter C.W. (1994): Applied Hydrogeology. New York, Macmillan College Publishing Company: 691.
 
Fortuna A.O. (2012): Técnicas Computacionais para Dinâmica dos Fluidos: Conceitos básicos e aplicações. São Paulo, Editora Edusp: 552
 
Freze R.A., Cherry J.A. (1979): Groundwater. Englewood Cliffs, Prentice-Hall: 604.
 
Hillel D. (1980): Fundamentals of Soil Physics. New York, Academic Press: 413
 
Holden N.M., Rook J.A., Scholefield D. (1996): Testing the performance of a one-dimensional solute transport model using response surface methodology. Geoderma, 69: 157–163.  https://doi.org/10.1016/0016-7061(95)00066-6
 
Kumar A., Kanwar R.S., Ahuja L.R. (1998): RZWQM simulation of nitrate concentrations in subsurface drainage from manured plots. Transactions of the ASAE, 41: 587–597.  https://doi.org/10.13031/2013.17226
 
Lair G.J., Gerzabek M.H., Haberhauer G., Jakusch M., Kirchmann H. (2006): Response of the sorption behavior of Cu, Cd and Zn to different soil management. Journal of Soil Science and Plant Nutrition Science, 169: 60–68. https://doi.org/10.1002/jpln.200521752
 
Matos A.T. (2010): Poluição Ambiental – Impactos no Meio Físico. Viçosa, Editora UFV: 260.
 
Lima C.G.R., Carvalho M.P., Mello L.M.M., Lima R.C. (2007): Correlação linear e espacial entre a produtividade de forragem, a porosidade total e a densidade do solo de Pereira Barreto (SP). Revista Brasileira de Ciência do Solo, 31: 1233–1244.  https://doi.org/10.1590/S0100-06832007000600002
 
Millington R.J., Quirk J.M. (1961): Permeability of porous solids. Transactions of the Faraday Society, 57: 1200–1207.  https://doi.org/10.1039/tf9615701200
 
Nogueira V.I.J.O. (2009): Impacto de nanomateriais orgânicos na estrutura da comunidade microbiana do solo [Ph.D. thesis]. Aveiro, Universidade de Aveiro: 45.
 
Noman M.T, Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. (2017): Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics, 83: 203–213.
 
Noman M.T, Ashraf M.A., Ali A. (2019): Synthesis and applications of nano TiO2: A review. Environmental Science and Pollution Research, 26: 3262–3291. https://doi.org/10.1007/s11356-018-3884-z
 
Oliveira L.F.C. (1999): Modelo para transporte de solutos no solo e no escoamento superficial. Viçosa, Universidade Federal de Viçosa: 171.
 
Oliveira L.F.C., Martinez M.A., Pruski F.F., Ruiz H.A., Lima L.A. (2000): Transporte de solutos no solo e no escoamento superficial – Desenvolvimento do modelo e simulação do movimento de água e escoamento superficial. Revista Brasileira de Engenharia Agrícola e Ambiental, 4: 63–69.  https://doi.org/10.1590/S1415-43662000000100012
 
Paschoalino M.P., Marcone G.P.S., Jardim W.F. (2010): Os nanomateriais e a questão ambiental. Química Nova,  https://doi.org/10.1590/S0100-40422010000200033
 
33: 421–430.
 
Pinheiro A., Gonçalves Jr. A.C., Wisniewski Jr. A., Moraes J.C.S., Silva M.R. (2009): Estudo da presença de pesticidas no perfil do solo, sob diferentes tipos de culturas. Revista Brasileira de Recursos Hídricos, 14: 51–59.  https://doi.org/10.21168/rbrh.v14n3.p51-59
 
Prevedello C.L. (1996): Física de Solos com Problemas Resolvidos. Curitiba, Salesward-Discovery: 446.
 
Reichardt K. (1996): Dinâmica da matéria e da energia em ecossistemas. Piracicaba, EdUSP: 513.
 
Sagee O., Dror I., Berkowitz B. (2012): Transport of silver nanoparticles (AgNPs) in soil. Chemosphere, 88: 670–675. https://doi.org/10.1016/j.chemosphere.2012.03.055
 
Saleh T.A (2020): Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation, 20: 101067.
 
Silva B.C.P., Vidal D.M., Queiroz P.I.B. (2004): Efeito da sorção no transporte de contaminantes orgânicos. Available at: http://www.bibl.ita.br/xencita/Artigos/24.pdf (Jan 28, 2014).
 
Van Genuchten M.T., Wierenga P.J. (1986): Solute dispersion: coefficients and retardation factors. In: Klute A. (ed.): Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods. Madison, ASA-SSSA Publisher: 1025–1031.
 
Yu C., Zheng C. (2010): HYDRUS – software for flow and transport modeling in variably saturated media. Groundwater, 48: 787–791.  https://doi.org/10.1111/j.1745-6584.2010.00751.x
 
Zeng C., Bennet G.D. (2002): Applied Contaminant Transport Modeling. New York, John Wiley & Sons Inc.: 621.
 
Wu S., Jeng D.-S., Seymour B.R. (2020): Numerical modelling of consolidation-induced solute transport in unsaturated soil with dynamic hydraulic conductivity and degree of saturation. Advances in Water Resources, 135: 103466. https://doi.org/10.1016/j.advwatres.2019.103466
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti