Drying kinetics and mathematical modelling of Arundo donax L. canes, a potential renewable fuel

https://doi.org/10.17221/73/2021-RAECitation:

Córdoba V., Manzur A., Santalla E. (2022): Drying kinetics and mathematical modelling of Arundo donax L. canes, a potential renewable fuel. Res. Agr. Eng., 68: 120–130.

download PDF

Arundo donax L. is an energy crop with the potential use as a renewable fuel. This study focused on the drying process of the canes in field and laboratory conditions to determine the effect of the harvest conditioning on the kinetics parameters of whole and slashed canes. The lab drying test was conducted in a thin layer dryer at temperatures between 30 and 80 °C and a 0.5 m·s–1 air velocity. The whole and slashed canes showed faster water evaporation rates as the temperature increased, but the slashed canes achieved a lower final moisture content in a shorter time. The effective diffusion coefficient varied between 3.67 × 10–12 and 1.28 × 10–11 m2·s–1 and showed a significant effect of the temperature, but not between samples; its temperature dependence was determined by the Arrhenius equation giving activation energies of 24.4 and 20.2 kJ·mol–1 for the whole and slashed canes respectively, not significantly different. The modelling of the experimental drying data to six thin layer drying models achieved good performance (R2 > 95.9%), although the Logarithmic model showed the best fit for both samples (R2 > 99.4%). In addition, a temperature dependent equation for the drying constant was included in the Logarithmic model for the whole and slashed canes which predicted with good performance (R2 > 97%) the moisture loss. The developed tools constitute an adequate model for the simulation of the drying process of Arundo donax L. that could be useful for the design of various equipment and systems.

References:
Abreu M., Reis A., Moura P., Fernando A.L., Luis A., Quental L., Patinha P., Girio F. (2020): Evaluation of the potential of biomass to energy in Portugal – Conclusions from the CONVERTE project. Energies, 13: 937. https://doi.org/10.3390/en13040937
 
Agote Goyalde N., De Castro Melo E., Pereira Rocha R., Duarte Goneli A.L., Araújo F.L. (2009): Mathematical modeling of the drying kinetics of sugarcane slice. Revista Brasileira de Produtos Agroindustriais, 11: 117–121. https://doi.org/10.15871/1517-8595/rbpa.v11n2p117-121
 
ASAE (2012): ASAE Standard S358.2 (DEC93) – Moisture measurement – Forages.
 
Barrado N., Elizalde F., Rodríguez D., Laddaga J., Hernández G., Bongiorno C., Vilatte C., D'Alfonso C., Aguas L., Confalone A. (2019): Arundo donax, una alternativa para producir energía en el centro de la provincia de Buenos Aires. IV Congreso Nacional de Ciencia y Tecnología Ambiental, 176 (in Spanish).
 
Basso M., Cukierman A. (2005): Arundo donax – Based activated carbons for aqueous-phase adsorption of volatile organic compounds. Industrial & Engineering Chemistry Research, 44: 2091–2100.
 
Bhaskar T., Bhavya B., Singh R., Naik D.V., Kumar A., Goyal H.B. (2011): Chapter 3 – Thermochemical conversion of biomass to biofuels. In: Pandey A., Larroche C., Ricke S.C., Dussap C.G., Gnansounou E. (eds): Biofuels. Cambridge, Academic Press: 51–77.
 
Burova N., Kislitsina N., Gryazina F., Pashkova G., Kuzminykh A. (2017): A review of techniques for drying food products in vacuum drying plants and methods for quality control of dried samples (technical note). Espacios, 38: 35–43.
 
Chandra P.K., Singh R.P. (1995): Applied Numerical Methods for Food and Agricultural Engineers. CRC Press.
 
Chen S., Danao M. (2015): Modeling the equilibrium moisture content (EMC) of Miscanthus sinensis, miscane, energy cane, and energy sorghum. Fuel, 147: 18–26. https://doi.org/10.1016/j.fuel.2015.01.021
 
Christou M., Alexopoulou E., Cosentino S.L., Copani V., Nogues S., Sanchez E., Monti A., Walter Zegada-Lizarazu L., Pari, A. (2018): Giant reed: From production to end use. In: Alexopoulou E. (ed.): Perennial Grasses for Bioenergy and Bioproducts: Production, Uses, Sustainability and Markets for Giant Reed, Miscanthus, Switchgrass, Reed Canary Grass and Bamboo. London, Academic Press: 64–75.
 
Córdoba V., Manzur A., Santalla E. (2021): Evaluación tecnológica del potencial energético y ambiental del Arundo donax L. In: III Jornadas Internacionales y V Nacionales de Ambiente 2021, May 12–14, 2021, online (in Spanish).
 
Crank J. (1979): The Mathematics of Diffusion. London and New York, Oxford University Press.
 
Falasca S., Flores Marco N., Galvani G. (2011): ¿Puede usarse una especie invasora como Arundo donax (caña común) con fines energéticos en Argentina? Available at https://inta.gob.ar/sites/default/files/script-tmp-inta_-_arundo_donax_con_fines_energeticos_en_argentin.pdf (in Spanish) (accessed Sept 27, 2021).
 
Garcia-Perez A., Englund K., Wang Z., Lewis T., Smith M., Zhou S., Das O., Pelaez-Samaniego M. (2011): Arundo donax sample preparation, torrefaction and analyses – Final report to the Portland General Electric Company. Available at https://assets.ctfassets.net/416ywc1laqmd/6bJmuBeWhCfmfpQRJAe9gq/c7ac5559392ab1fcbcdb6f5deecf4bf4/portland-ge-final-report.pdf (accessed Sept 27, 2021).
 
Gilbert P., Ryu C., Sharifi V., Swithenbank J. (2009): Effect of process parameters on pelletisation of herbaceous crops. Fuel, 88: 1491–1497. https://doi.org/10.1016/j.fuel.2009.03.015
 
Henderson S.M. (1974): Progress in Developing the Thin Layer Drying Equation. ASAE, 17: 1167–1169. https://doi.org/10.13031/2013.37052
 
Henderson S.M., Pabis S. (1961): Grain drying theory: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6: 169–174.
 
Jambor A., Torok A. (2019): The economics of Arundo donax – A systematic literature review. Sustainability, 11: 1–22. https://doi.org/10.3390/su11154225
 
Lewis W. (1921): The rate of drying of solid materials. Industrial & Engineering Chemistry, 13: 427–432.
 
Li Y., Liu H. (2000): High-pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19: 177–186. https://doi.org/10.1016/S0961-9534(00)00026-X
 
Mantineo M., D'Agosta G., Copani V., Patanè C., Cosentino S. (2009): Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114: 204–213. https://doi.org/10.1016/j.fcr.2009.07.020
 
Midilli A., Kucuk H., Yapar Z. (2002): A new model for single-layer drying. Drying Technology, 20: 1503–1513. https://doi.org/10.1081/DRT-120005864
 
Obataya E., Gril J., Perré P. (2005): Shrinkage of cane (Arundo donax) II. Effect of drying condition on the intensity of cell collapse. Journal of Wood Science, 51: 130–135. https://doi.org/10.1007/s10086-004-0629-z
 
Page G. (1949): Factors Influencing the Maximum Rate of Air Drying Shelled Corn in Thin-Layers. Purdue University.
 
Pari L., Scarfone A., Santangelo E., Figorilli S., Crognale S., Petruccioli M., Suardi A., Gallucci F., Barontini M. (2015): Alternative storage systems of Arundo donax L. and characterization of the stored biomass. Industrial Crops and Products, 75: 59–65. https://doi.org/10.1016/j.indcrop.2015.04.018
 
Pereyra Müller N., Manzur A., Santalla E., Córdoba V. (2021): Evaluación de Arundo donax como biocombustible para la producción de energía térmica. Energías Renovables y Medio Ambiente, 48: 11–17 (in Spanish).
 
Rodríguez D., Lázaro L., Ressia J., Laddaga J., Grosso J., Bongiorno C., Confalone A. (2021): Producción de biomasa de Arundo donax L., un cultivo bioenergético para el centro de la provincia de Buenos Aires. Revista Argentina de  Meteorología RADA, 12: 15–20 (in Spanish).
 
Santalla E.M., Mascheroni R.H. (2010): Moisture diffusivity in high oleic sunflower seeds and kernels. International Journal of Food Properties, 13: 464–474. https://doi.org/10.1080/10942910802641985
 
Scheufele F., Ribeiro C., Módenes A., Espinoza-Quiñones F., Bergamasco R., Pereira N. (2015): Assessment of drying temperature of sugarcane bagasse on sorption of reactive blue 5G dye. Fibers and Polymers, 16: 1646–1656. https://doi.org/10.1007/s12221-015-5087-2
 
Villalba Vidales J., Arzola De La Peña N. (2015): Modelos matemáticos y experimentales sobre el secado de biomasa. Ingeniería y Desarrollo. Universidad del Norte, 33: 301–330 (in Spanish). https://doi.org/10.14482/inde.33.2.5674
 
Yancey N., Wright C., Connor C. (2009): Preprocessing moist lignocellulosic biomass for biorefinery feedstocks. In: Procceedings of ASABE 2009 Annual International Meeting, June 21–24, 2009, Reno, USA: 1–17.
 
Williams C., Biswas T. (2010): Commercial Potential of Giant Reed for Pulp, Paper and Biofuel Production. Adelaide, Rural Industries Research and Development Corporation.
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti