Processing of sugar beets assisted by pulsed electric fields

https://doi.org/10.17221/91/2021-RAECitation:

Vorobiev E., Lebovka N. (2022): Processing of sugar beets assisted by pulsed electric fields. Res Agr. Eng., 68: 63–79.

download PDF

Pulsed electric fields (PEFs) are becoming more and more popular in different applications in processing agricultural products. The PEF technology is based on the application of high voltage short pulses that allow electroporation in the cell membranes. This review outlines the PEF applications used in processing sugar beets. New perspective technologies of the cold or warm aqueous extraction of sugar, cold pressing of sugar beet cossettes, and combined pressing-diffusion process are discussed. Electroporation devices for pilot and industrial applications in the sugar beet industry are also presented.

References:
Almohammed F., Mhemdi H., Grimi N., Vorobiev E. (2015): Alkaline pressing of electroporated sugar beet tissue: Process behavior and qualitative characteristics of raw juice. Food and Bioprocess Technology, 8: 1947–1957. https://doi.org/10.1007/s11947-015-1551-7
 
Almohammed F., Mhemdi H., Vorobiev E. (2016a): Pulsed electric field treatment of sugar beet tails as a sustainable feedstock for bioethanol production. Applied Energy, 162: 49–57. https://doi.org/10.1016/j.apenergy.2015.10.050
 
Almohammed F., Mhemdi H., Vorobiev E. (2016b): Several-staged alkaline pressing-soaking of electroporated sugar beet slices for minimization of sucrose loss. Innovative Food Science & Emerging Technologies, 36: 18–25.
 
Almohammed F., Koubaa M., Khelfa A., Nakaya M., Mhemdi H., Vorobiev E. (2017a): Pectin recovery from sugar beet pulp enhanced by high-voltage electrical discharges. Food and Bioproducts Processing, 103: 95–103. https://doi.org/10.1016/j.fbp.2017.03.005
 
Almohammed F., Mhemdi H., Vorobiev E. (2017b): Purification of juices obtained with innovative pulsed electric field and alkaline pressing of sugar beet tissue. Separation and Purification Technology, 173: 156–164. https://doi.org/10.1016/j.seppur.2016.09.026
 
Al-Nema Q., Mozahim A.M. (2020): Electrofusion of mesophyll protoplasts from two varieties of sugar beet (Beta vulgaris L.). Journal of Life and Bio Sciences Research, 1: 22–25. https://doi.org/10.38094/jlbsr117
 
Arnold J., Frenzel S., Michelberger T., Scherer P., Scheuer T., Weibel M. (2009): Process and device for the electroporation of beet cossettes. Patent No. CA2722522A1, Südzucker AG.
 
Arnold J., Frenzel S., Michelberger T., Scherer P., Scheuer T. (2012): Extraction of constituents from sugar beet chips. Patent No. CA2570475C, Südzucker AG.
 
Arnold J., Frenzel S., Michelberger T., Scherer P., Scheuer T., Weibel M. (2014): Process for the electroporation of beet cossettes and device for carrying out this process. Patent No. US8691306B2. Südzucker AG.
 
Arnold J., Sack M., Schmidt G., Epperlein D. (2020): Reactor system for electroporation. Patent No. PL2515686T3, Südzucker AG.
 
Arshad R.N., Abdul-Malek Z., Munir A., Buntat Z., Ahmad M.H., Jusoh Y.M.M., Bekhit A.E.D., Roobab U., Manzoor M.F., Aadil, R.M. (2020): Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science & Technology, 104: 1–13.
 
Arshad R.N., Abdul-Malek Z., Roobab U., Munir M.A., Naderipour A., Qureshi M.I., Bekhit A.E.D., Liu Z.W., Aadil R.M. (2021): Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science & Technology, 111: 43–54.
 
Arshad R.N., Abdul-Malek Z., Roobab U., Qureshi M.I., Khan N., Ahmad M.H., Liu Z.W., Aadil R.M. (2021): Effective valorization of food wastes and by-products through pulsed electric field: A systematic review. Journal of Food Process Engineering, 44: e13629. https://doi.org/10.1111/jfpe.13629
 
Asadi M. (2006): Beet-sugar Handbook. Hoboken, New Jersey: John Wiley & Sons, Inc.
 
Bazhal I.G., Kupchik M.P., Gul, I.S. (1983): Desugaring of sugar beet slices in an electric field. Sakharnaya Promyshlennost – Sugar Industry, 3: 28–30. (in Russian)
 
Ben-Ali S. (2018): Comparison of electric, thermal and combined treatment effect on solid-liquid extraction. International Journal of Engineering and Technology, 10: 44–52. https://doi.org/10.21817/ijet/2018/v10i1/181001022
 
Berghöfer T., Bluhm H., Eing C., Sack M. (2010): Electroporation reactor for pressured electroporation of biological commercial- and waste material as process material in continuous process throughput, comprises two roller groups with a roller and a fluid permeable transport device. Patent No. DE102009011755A1, Karlsruher Institut für Technologie – KIT.
 
Blahovec J., Vorobiev E., Lebovka N. (2017): Pulsed electric fields pretreatments for the cooking of foods. Food Engineering Reviews, 9: 226–236. https://doi.org/10.1007/s12393-017-9170-x
 
Bluhm H., Schultheiss C., Frey W., Gusbeth C., Sack M., Strissner R. (2004): Industrial scale treatment of biological cells with pulsed electric fields. In: Proceedings of Conference Record of the Twenty-Sixth International Power Modulator Symposium, 2004 and 2004 High-Voltage Workshop, May 23–26, 2004, San Francisco, USA: 8–14.
 
Bluhm H., Sack M. (2009): Industrial-scale treatment of biological tissues with pulsed electric fields. In: Vorobiev E., Lebovka N. (eds): Electrotechnologies for Extraction from Food Plants and Biomaterials. Food Engineering Series. New York, Springer: 237–269.
 
Bouzrara H., Vorobiev E. (2000): Beet juice extraction by pressing and pulsed electric fields. International Sugar Journal, 102: 194–200.
 
Chen M., Zhao Y., Yu S. (2015): Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chemistry, 172: 543–550. https://doi.org/10.1016/j.foodchem.2014.09.110
 
Dolinskaya I.N., Dan'kevich G.N., Gulyj I.S., Kupchik M.P., Matvienko A.B., Katrokha I.M. (1992): The influence of electrical and thermal factors on efficiency of processes to extract soluble substances from plant raw materials. Elektronnaya Obrabotka Materialov (Surface Engineering and Applied Electrochemistry), N1: 66–69. (in Russian)
 
Dragomir M.C.B., Zeca E.D., Ivan A.S., Stoica M. (2020): Pulsed electric field and high voltage electrical discharge-innovative food electrotechnologies. A review. Journal of Agroalimentary Processes and Technologies, 26: 34–39.
 
Eady C., Warren G., Lindsey K., Jones M.G.K. (1988): Electrofusion and electroporation of sugar beet (Beta vulgaris L.) protoplasts. In: Puite K.J., Dons J.J.M., Huizing H.J., Kool A.J., Koornneef M., Krens F.A. (eds): Progress in Plant Protoplast Research. Dordrecht, Springer: 261–262.
 
El-Belghiti K., Rabhi Z., Vorobiev E. (2005a): Effect of centrifugal force on the aqueous extraction of solute from sugar beet tissue pretreated by a pulsed electric field. Journal of Food Process Engineering, 28: 346–358. https://doi.org/10.1111/j.1745-4530.2005.00413.x
 
El-Belghiti K., Rabhi Z., Vorobiev E. (2005b): Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field. Journal of the Science of Food and Agriculture, 85: 213–218. https://doi.org/10.1002/jsfa.1944
 
Eshtiaghi M.N., Knorr D. (2002): High electric field pulse pretreatment: Potential for sugar beet processing. Journal of Food Engineering, 52: 265–272. https://doi.org/10.1016/S0260-8774(01)00114-5
 
Eshtiaghi M.N., Knorr D. (2004): Process for treating sugar beets. Patent No. EP1086253B1, Tereos SA.
 
Eshtiaghi M.N., Maskooki A. (2009): Effect of various pulsed electric fields conditions on extraction of sugar from sugar beet (Persian). Iranian Journal Food Science and Technology Research, 5: 151–162.
 
Frenzel S., Michelberger T., Witte G. (2012): Extraction of ingredients such as sugar from biological material. Patent No. US8163091B2, Südzucker AG.
 
Gjörek J., Flisar K., Miklavčič D., Poklar N.U., Golob J. (2016): Extraction of sugar solution from sugar beet cossettes by electroporation and compressive load. In: Proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies, Sept 6–10, 2015, Portorož, Slovenia: 384–387.
 
Grimi N., Vorobiev E., Lebovka N., Vaxelaire J. (2010): Solid–liquid expression from denaturated plant tissue: Filtration–Consolidation behaviour. Journal of Food Engineering, 96: 29–36. https://doi.org/10.1016/j.jfoodeng.2009.06.039
 
Gurel E., Gurel S., Lemaux P.G. (2008): Biotechnology applications for sugar beet. Critical Reviews in Plant Sciences, 27: 108–140. https://doi.org/10.1080/07352680802202000
 
Hall R.D., Pedersen C., Krens F.A. (1994): Regeneration of plants from protoplasts of Beta vulgaris (sugar beet). In: Bajaj J.P.S. (ed.): Biotechnology in Agriculture and Forestry, 29: Plant Protoplasts and Genetic Engineering V. Berlin and Heidelberg, Springer-Verlag GmBH: 16–37.
 
Huang X., Li D., Wang L. (2018): Effect of particle size of sugar beet pulp on the extraction and property of pectin. Journal of Food Engineering, 218: 44–49. https://doi.org/10.1016/j.jfoodeng.2017.09.001
 
Jafarzadeh-Moghadda M., Shadde R., Peighambardous S.H. (2021): Sugar beet pectin extracted by ultrasound or conventional heating: A comparison. Journal of Food Science and Technology, 58: 2567–2578.
 
Jemai A.B., Vorobiev E. (2003): Enhanced leaching from sugar beet cossettes by pulsed electric field. Journal of Food Engineering, 59: 405–412. https://doi.org/10.1016/S0260-8774(02)00499-5
 
Jemai A.B., Vorobiev E. (2006): Pulsed electric field assisted pressing of sugar beet slices: Towards a novel process of cold juice extraction. Biosystems Engineering, 93: 57–68. https://doi.org/10.1016/j.biosystemseng.2005.09.008
 
Joersbo M. (2007): Sugar beet. In: Pua E.C., Davey M.R. (eds): Transgenic Crops IV. Biotechnology in Agriculture and Forestry, 59, Berlin and Heidelberg, Springer: 355–379.
 
Joersbo M., Brunstedt J. (1996): Electroporation and transgenic plant production. In: Lynch P.T., Davey M.R. (eds): Electrical Manipulation of Cells. Boston, Springer: 201–222.
 
Joersbo M., Brunstedt J. (1990a): Direct gene transfer to plant protoplasts by electroporation by alternating, rectangular and exponentially decaying pulses. Plant Cell Reports, 8: 701–705. https://doi.org/10.1007/BF00272098
 
Joersbo M., Brunstedt J. (1990b): Stimulation of protein synthesis in electroporated plant protoplasts. Journal of Plant Physiology, 136: 464–467. https://doi.org/10.1016/S0176-1617(11)80036-2
 
Joersbo M., Brunstedt J., Floto F. (1990): Quantitative relationship between parameters of electroporation. Journal of Plant Physiology, 137: 169–174. https://doi.org/10.1016/S0176-1617(11)80076-3
 
Karpovich N.S., Bazhal I.G., Gulyi I.S., Bobrovnik L.D., Totnaylo M.A. (1981): The behavior of the structural elements of a plant cell in an electric field. Sakharnaya Promyshlennost – Sugar Industry, 10: 32–35. (in Russian)
 
Katroha I.M., Matvienko A.B., Vorona A.G., Kupchik M.P. (1984): Intensification of sugar extraction from sugar beet slices in an electric field. Sakharnaya Promyshlennost  – Sugar Industry, 7: 28–31. (in Russian)
 
Kotnik T., Rems L., Tarek M., Miklavčič D. (2019): Membrane electroporation and electropermeabilization: Mechanisms and models. Annual Review of Biophysics, 48: 63–91. https://doi.org/10.1146/annurev-biophys-052118-115451
 
Kovačić Đ., Rupčić S., Kralik D., Jovičić D., Spajić R., Tišma M. (2021): Pulsed electric field: An emerging pretreatment technology in a biogas production. Waste Management, 120: 467–483. https://doi.org/10.1016/j.wasman.2020.10.009
 
Kupchik M.P., Matvienko A.B., Mank V.V. (1987): Changes in the ultrastructure of beet cells during diffusion under the influence of temperature and electric field. Sakharnaya Promyshlennost – Sugar Industry, 5: 25–27. (in Russian)
 
Lal R., Lal S. (2020): Genetic Engineering of Plants for Crop Improvement. London, CRC Press.
 
Lanoiselle J.L., Vorobiev E., Bousseta N., Manteau S., Logeat M. (2012): Method for extracting molecules of interest from all or part of a plant matrix. Patent, No. WO2012066144A1, Universite de Technologie de Compiegne UTC and Societe Francaise De Laboratoires D'oenologie Sofralab.
 
Lebovka N.I., Praporscic I., Ghnimi S., Vorobiev E. (2005): Does electroporation occur during the ohmic heating of food? Journal of Food Science, 70: 308–311. https://doi.org/10.1111/j.1365-2621.2005.tb09969.x
 
Lebovka N.I., Shynkaryk M.V, El-Belghiti K., Benjelloun H., Vorobiev E. (2007a): Plasmolysis of sugarbeet: Pulsed electric fields and thermal treatment. Journal of Food Engineering, 80: 639–644. https://doi.org/10.1016/j.jfoodeng.2006.06.020
 
Lebovka N.I., Shynkaryk M., Vorobiev E. (2007b): Moderate electric field treatment of sugarbeet tissues. Biosystems Engineering, 96: 47–56. https://doi.org/10.1016/j.biosystemseng.2006.09.005
 
Li Z., Fan Y., Xi J. (2019): Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chemistry, 277: 246–260. https://doi.org/10.1016/j.foodchem.2018.10.119
 
Lindsey K., Jones M.G.K. (1987a): The permeability of electroporated cells and protoplasts of sugar beet. Planta, 172: 346–355. https://doi.org/10.1007/BF00398663
 
Lindsey K., Jones M.G.K. (1987b): Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant Molecular Biology, 10: 43–52. https://doi.org/10.1007/BF00014185
 
Lindsey K., Jones M.G.K., Fish N. (1988): Direct gene transfer into plant protoplasts. In: Walker J.M. (ed.): New Nucleic Acid Techniques. Methods in Molecular Biology, 4. Totowa, Humana Press: 519–536.
 
Lindsey K., Jones M.G.K. (1989): Stable transformation of sugarbeet protoplasts by electroporation. Plant Cell Reports, 8: 71–74. https://doi.org/10.1007/BF00716841
 
Lindsey K., Jones M.G.K. (1990): Electroporation of cells. Physiologia Plantarum, 79: 168–172. https://doi.org/10.1111/j.1399-3054.1990.tb05881.x
 
Loeffler M.J. (2002): Commercial pulsed power applications in Germany. In: Proceedings of Symposium on Pulsed Power and Plasma Applications. Kailua-Kona, Hawaii.
 
Loginov M., Loginova K., Lebovka N., Vorobiev E. (2011): Comparison of dead-end ultrafiltration behaviour and filtrate quality of sugar beet juices obtained by conventional and "cold" PEF-assisted diffusion. Journal of Membrane Science, 377: 273–283. https://doi.org/10.1016/j.memsci.2011.05.008
 
Loginova K., Loginov M., Vorobiev E., Lebovka N.I. (2011a): Quality and filtration characteristics of sugar beet juice obtained by "cold" extraction assisted by pulsed electric field. Journal of Food Engineering, 106: 144–151. https://doi.org/10.1016/j.jfoodeng.2011.04.017
 
Loginova K., Vorobiev E., Bals O., Lebovka N. (2011b): Pilot study of countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by pulsed electric fields. Journal of Food Engineering, 102: 340–347. https://doi.org/10.1016/j.jfoodeng.2010.09.010
 
Loginova K., Loginov M., Vorobiev E., Lebovka N.I. (2012): Better lime purification of sugar beet juice obtained by low temperature aqueous extraction assisted by pulsed electric field. LWT – Food Science and Technology, 46: 371–374. https://doi.org/10.1016/j.lwt.2011.10.005
 
Lopez N., Puertolas E., Condon S., Raso J., Alvarez I. (2009): Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT – Food Science and Technology, 42: 1674–1680. https://doi.org/10.1016/j.lwt.2009.05.015
 
Ma S., Wang Z. (2013): Pulsed electric field-assisted modification of pectin from sugar beet pulp. Carbohydrate Polymers, 92: 1700–1704. https://doi.org/10.1016/j.carbpol.2012.11.014
 
Ma S., Yu S., Zhang B., Wang Z. (2012): Physicochemical properties of sugar beet pulp pectin by pulsed electric field treatment. International Journal of Food Science & Technology, 47: 2538–2544.
 
Marggraf A.S. (1747): Histoire de l'Academie Royale des Sciences et Belles Lettres de Berlin.
 
Martínez J.M., Delso C., Álvarez I., Raso J. (2020): Pulsed electric field-assisted extraction of valuable compounds from microorganisms. Comprehensive Reviews in Food Science and Food Safety, 19: 530–552. https://doi.org/10.1111/1541-4337.12512
 
Maskooki A.M., Eshtiaghi M.N. (2011): Effects of various pulsed electric field conditions on cell disintegration and mass transfer of sugar beet. Journal of Food Science and Engineering, 1: 67.
 
Maskooki A., Eshtiaghi M.N. (2012): Impact of pulsed electric field on cell disintegration and mass transfer in sugar beet. Food and Bioproducts Processing, 90: 377–384. https://doi.org/10.1016/j.fbp.2011.12.007
 
McGinnis R.A. (1982): Beet-sugar technology. Beet Sugar Development Foundation. Fort Collins, Colorado: 265–274.
 
Mhemdi H., Almohammed F., Bals O., Grimi N., Vorobiev E. (2015): Impact of pulsed electric field and preheating on the lime purification of raw sugar beet expressed juices. Food and Bioproducts Processing, 95: 323–331. https://doi.org/10.1016/j.fbp.2014.10.011
 
Mhemdi H., Bals O., Grimi N., Vorobiev E. (2012): Filtration diffusivity and expression behaviour of thermally and electrically pretreated sugar beet tissue and press-cake. Separation and Purification Technology, 95: 118–125. https://doi.org/10.1016/j.seppur.2012.04.031
 
Mhemdi H., Bals O., Grimi N., Vorobiev E. (2014): Alternative pressing/ultrafiltration process for sugar beet valorization: Impact of pulsed electric field and cossettes preheating on the qualitative characteristics of juices. Food and Bioprocess Technology, 7: 795–805. https://doi.org/10.1007/s11947-013-1103-y
 
Mhemdi H., Bals O., Vorobiev E. (2016): Combined pressing-diffusion technology for sugar beets pretreated by pulsed electric field. Journal of Food Engineering, 168: 166–172. https://doi.org/10.1016/j.jfoodeng.2015.07.034
 
Nakthong N., Eshtiaghi M.N. (2020): Pulsed electric field treatment of sugar beet. In: Procceeding of the 6th International Conference on Environment and Renewable Energy Feb 24–26, 2020, Hanoi, Vietnam: 1–8.
 
Pacheco M.T., Villamiel M., Moreno R., Moreno F.J. (2019): Structural and rheological properties of pectins extracted from industrial sugar beet by-products. Molecules, 24: 392. https://doi.org/10.3390/molecules24030392
 
Pataro G., Barca G.M.J., Pereira R.N., Vicente A.A., Teixeira J.A., Ferrari G. (2014): Quantification of metal release from stainless steel electrodes during conventional and pulsed ohmic heating. Innovative Food Science & Emerging Technologies, 21: 66–73.
 
Poiesz E.G., Daniëls A.C.P.H. (2021): Sugar beet juice production and processing, Patent No. EP3783115A1, Cooperatie Koninklijke Cosun U.A.
 
Praporscic I. (2005): Influence du traitement combine par champ electrique pulse et chauffage modere sur les proprietes physiques et sur le comportement au pressage de produits vegetaux [PhD Thesis]. Compiegne, Universite de Technologie de Compiegne (in French).
 
Praporscic I., Ghnimi S., Vorobiev E. (2005): Enhancement of pressing of sugar beet cuts by combined ohmic heating and pulsed electric field treatment. Journal of Food Processing and Preservation, 29: 378–389. https://doi.org/10.1111/j.1745-4549.2005.00035.x
 
Raso J., Frey W., Ferrari G., Pataro G., Knorr D., Teissie J., Miklavčič D. (2016): Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innovative Food Science & Emerging Technologies, 37: 312–321.
 
Rezaei K., Shahidi Noghabi M., Behzad K., Maskooki A. (2018): Evaluation of the effect of pulsed electric field (PEF) treatment on the quality of raw syrup extracted from sugar beet. Journal of Food Science and Technology, 15: 267–276. (in Iranian)
 
Rivera A.L., Gómez-Lim M., Fernández F., Loske A.M. (2012): Physical methods for genetic transformation in plants. Physics of Life Reviews, 9: 352.
 
Sack M., Attmann F., Stangle R., Wolf A., Frey W., Muller G. (2009): Upgrade of the electroporation device KEA-MOBIL. Acta Physica Polonica-Series A General Physics, 115: 1081. https://doi.org/10.12693/APhysPolA.115.1081
 
Sack M., Bluhm H. (2005): Long-term test of a triggered Marx-generator in repetitive operation. In: Proceedings of the 2005 IEEE Pulsed Power Conference, June 13–15, 2005, Monterrey, USA: 1113–1116.
 
Sack M., Schultheiss C. (2012): Device for the electroporation of biologically vegetable processing material, Patent No. EP1751860B1, Karlsruher Institut fuer Technologie KIT.
 
Sack M., Schultheiss C., Bluhm H. (2004): Parameter studies on the electroporation efficiency of sugar beets. In: The Proccedings of the 31st IEEE International Conference on Plasma Science, Jun 28–Jul 1, 2004, Baltimore, USA: 196.
 
Sack M., Sigler J., Frenzel S., Eing C., Arnold J., Michelberger T., Frey W., Attmann F., Stukenbrock L., Müller G. (2010). Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Engineering Reviews, 2: 147–156. https://doi.org/10.1007/s12393-010-9017-1
 
Sack M., Mueller G. (2016): Scaled design of PEF treatment reactors for electroporation-assisted extraction processes. Innovative Food Science & Emerging Technologies, 37: 400–406.
 
Sack M., Mueller G. (2017): Design considerations for electroporation reactors. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 1992–2000. https://doi.org/10.1109/TDEI.2016.006219
 
Salehi M., Omidvari A. (2016): PEF application on optimization of energy consumption in extraction of sugar from sugar beet. Journal of Energy Management, 5: 26–33.
 
Schiweck H., Clarke M., Pollach G. (2012): Sugar. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. 34: 558–624.
 
Schultheiss C., Bluhm H.J., Mayer H.G., Sack M., Kern M. (2003): Electroporation for the treatment of sugar beet cells. Part 1: Principle of electroporation and development of industrial devices. In: Proceedings of the 22nd General Assembly of the International Commission for Sugar Technology, May 18–21, 2003, Madrid, Spain: 209–215.
 
Schultheiss C., Bluhm H.J., Mayer H.G., Kern M. (2001): Industrial-scale electroporation of plant material using high repetition rate marx generators. In: Proceedings of the 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, June 17–21, 2001, Las Vegas, USA: 207–210.
 
Schultheiss C., Sack M., Bluhm H., Mayer H.G., Kern M. (2004): Operational experience of industrial scale electroporation devices. In: The Proceedings of the 31st IEEE International Conference on Plasma Science, June 28–July 1, 2004, Baltimore, USA: 114.
 
Schultheiss C., Bluhm H., Mayer H.G., Kern M., Michelberger T., Witte G. (2002): Processing of sugar beets with pulsed-electric fields. IEEE Transactions on Plasma Science, 30: 1547–1551. https://doi.org/10.1109/TPS.2002.804212
 
Schultheiss C., Kern M. (2003): Electroporation reactor for the continuous processing of lumpy products, Patent No. DE10144479C2, KEA TEC GmbH Forschungszentrum Karlsruhe GmbH.
 
Schultheiss C., Kern M. (2010): Electroporation reactor for the continuous processing of lumpy products, Patent No. CA2460569C, KEA TEC GmbH Forschungszentrum Karlsruhe GmbH.
 
Shynkaryk M. (2006): Influence de la permeabilisation membranaire par champ electrique sur la performance de sechage des vegetaux [PhD Thesis]. Compiegne, Universite de Technologie de Compiegne (in French).
 
Stevanato P., Chiodi C., Broccanello C., Concheri G., Biancardi E., Pavli O., Skaracis G. (2019): Sustainability of the sugar beet crop. Sugar Tech, 21: 703–716. https://doi.org/10.1007/s12355-019-00734-9
 
Tylewicz U. (2020): How does pulsed electric field work? In: Barba F.J., Parniakov O., Wiktorm A. (eds): Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow. Cambridge, Elsevier Inc: 3–21.
 
van der Poel P.W., Schiweck H., Schwartz T. (1998): Sugar Technology. Beet and Cane Sugar Manufacture. Berlin, Verlag Dr. Albert Vartens KG.
 
Vidal O.P. (2014): First pulsed electric field (PEF) application at industrial scale in beet sugar industry. Sugar Industry/Zuckerindustrie, 139: 37–39. https://doi.org/10.36961/si15194
 
Vidal O.P., Vorobiev E. (2012): Procede et installation de traitement des tissus vegetaux pour en extraire une substance vegetale, notamment un jus. Patent No. FR2959399B1, Comeca Power, FR, Maguin SAS, FR, Universite de Technologie de Compiegne UTC.
 
Vidal O.P., Vorobiev E. (2013): Method and apparatus for treating vegetable tissues in order to extract therefrom a vegetable substance, in particular a juice, Patent No. US20130202751A1, Maguin Sas.
 
Vorobiev E., Andre A., Bouzrara H., Bazhal M. (2002): Method for extracting liquid from a cellular material, and devices for carrying out said method, Patent No. FR2805199B1, Association Gradient.
 
Vorobiev E., Lebovka N. (2020): Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy. Cham, Springer.
 
Vorobiev E., Maishak F. (2018): Selective extraction of sucrose from sugar beet by electroplasmolysis and its influence on the technology of sugar production. Sahar (Sugar), 3: 19–29 (part 1) and 4: 28–37 (part 2) (in Russian).
 
Zagorul'ko A.Y., Myl'kov M.N. (1953): Production of juice at low temperature using electroplasmolysis. Sakharnaya Promyshlennost – Sugar Industry, 10: 15–18. (in Russian)
 
Zagorul'ko A.Y. (1957): Impact of thermal plasmolysis and selective electroplasmolysis on the structure of the plasma cell membrane and permeability of beet tissues. Sakharnaya Promyshlennost – Sugar Industry, 11: 67–71. (in Russian)
 
Zhu Z., Mhemdi H., Ding L., Bals O., Jaffrin M.Y., Grimi N., Vorobiev E. (2015): Dead-end dynamic ultrafiltration of juice expressed from electroporated sugar beets. Food and Bioprocess Technology, 8: 615–622. https://doi.org/10.1007/s11947-014-1427-2
 
Zicari S., Zhang R., Kaffka S. (2019): Sugar beet. In: Pan Z., Zhang R., Zicari S. (eds): Integrated Processing Technologies for Food and Agricultural By-Products. Cambridge, Elsevier: 331–351.
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti