Viscosity and biodiesel characteristics of wild Canarium schweinfurthii Engl. fruit oil  

https://doi.org/10.17221/99/2017-RAECitation:James Chinaka E. (2018): Viscosity and biodiesel characteristics of wild Canarium schweinfurthii Engl. fruit oil  . Res. Agr. Eng., 64: 169-175.
download PDF

The viscosity of two varieties of Canarium schweinfurthiiEngl. fruits oil (large and long) were studied at four different temperatures (30, 40, 50 and 60oC) and three shear rates (7.91, 15.82 and 39.54 s–1). SurgiFriend Medical (model NDJ-5S) viscometer was used to carry out the study. Biodiesel characteristics of the oil were also investigated. The results showed that variety had no effect (P < 0.05) on the viscosity of Canarium schweinfurthii Engl. fruit while temperature had especially at 50oC and above. The shear rate of 15.82 s–1 (12 rps) gave the lowest oil viscosity for both varieties. The oil from large fruit had the best temperature stability, low percentage viscosity (6.33%) variation and least activation energy (796.51 J·mol–1·K–1) while long variety had best biodiesel characteristic for safe handling. Temperature had no significant (P < 0.05) effect on the consistency coefficient (C) and flow behaviour index (n) of both varieties of Canarium schweinfurthii Engl. fruits oil. Besides, oil from both fruit varieties is Newtonian fluids.

References:
Abramovic H., Klofutar C. (1998): The temperature dependence of dynamic viscosity for some vegetable oils. ActaChimica Slovenica, 45: 69–77.
 
Lokumcu Altay Filiz, Ak M Mehmet (2005): Effects of temperature, shear rate and constituents on rheological properties of tahin (sesame paste). Journal of the Science of Food and Agriculture, 85, 105-111 https://doi.org/10.1002/jsfa.1945
 
Al-Zahrani Saeed M., Al-Fariss Tariq F. (1998): A general model for the viscosity of waxy oils. Chemical Engineering and Processing: Process Intensification, 37, 433-437 https://doi.org/10.1016/S0255-2701(98)00047-6
 
Becker Klaus, Makkar H. P. S. (2008): Jatropha curcas: A potential source for tomorrow' s oil and biodiesel. Lipid Technology, 20, 104-107 https://doi.org/10.1002/lite.200800023
 
Demirbas A. (2008). Biodiesel: A Realistic Fuel Alternative for Diesel Engines. Springer. Verlag London Limited: 102–105.
 
Diamante Lemuel M., Lan Tianying (2014): Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s 1. Journal of Food Processing, 2014, 1-6 https://doi.org/10.1155/2014/234583
 
Edou E.P., Abdoul-Latif F.M., Obame L.C., Mewono L., Agnaniet H. (2012): Volatile constituents of Canarium schweinfurthii Engl. essential oil from Gabon. International Journal of AgriScience, 2: 200–203.
 
Eromosele C.O, Paschal N.H (2003): Characterization and viscosity parameters of seed oils from wild plants. Bioresource Technology, 86, 203-205 https://doi.org/10.1016/S0960-8524(02)00147-5
 
Esteban Bernat, Riba Jordi-Roger, Baquero Grau, Rius Antoni, Puig Rita (2012): Temperature dependence of density and viscosity of vegetable oils. Biomass and Bioenergy, 42, 164-171 https://doi.org/10.1016/j.biombioe.2012.03.007
 
Fasina O.O., Colley Z. (2008): Viscosity and Specific Heat of Vegetable Oils as a Function of Temperature: 35°C to 180°C. International Journal of Food Properties, 11, 738-746 https://doi.org/10.1080/10942910701586273
 
Foidl N., Foidl G., Sanchez M., Mittelbach M., Hackel S. (1996). Jatropha curcas L. as a source of production of biofuel in Nicaragua. Bioresource. Technology, 58: 77–82.
 
Ibemesi J.A. (1993): Potential of melon seed oil in development of alkyd resin Nigeria Journal of Science, 27: 299–304.
 
István B., Ioan-Adrian T. (2011): Biodiesel quality, standards and properties. In: Montero G. (ed.): Biodiesel Quality, Emissions And By-Products. Available at http://www.intechopen.com/books/biodiesel-quality-emissions-and-by-products/biodiesel-qualitystandards-and-properties
 
Keshvadi A., Bin Endan J., Harun H., Ahmad D., Saleena F. (2012): The reflection of moisture content on palm oil development during the ripening process of fresh fruits. Journal of Food, Agriculture and Environment, 10: 203–209.
 
Knothe Gerhard, Steidley Kevin R. (2005): Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84, 1059-1065 https://doi.org/10.1016/j.fuel.2005.01.016
 
Lemuel M.D.,d Tianying L. (2014): Absolute viscosities of vegetable oils at different temperatures and shear rate range of 64.5 to 4835 s−1. Journal of Food Processing, Article ID 234583.
 
Mohsenin N.N. (1986). Physical Properties of Plant and Animal Materials. Gordon and Breach, New York, NY: 196–224.
 
Noureddini H., Teoh B. C., Davis Clements L. (1992): Viscosities of vegetable oils and fatty acids. Journal of the American Oil Chemists' Society, 69, 1189-1191 https://doi.org/10.1007/BF02637678
 
Onimawo I. A., Adukwu B.I. (2003): Proximate Composition and Selected Physicochemical Properties of the Fruits of Canarium schweifurthii Linn. African Journal of Science and Technology, 4, - https://doi.org/10.4314/ajst.v4i1.15247
 
Orwa C., Mutua A., Kindt R., Jamnadass R, Simons A. (2009): Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.
 
Sadat Anwar, Khan Iqbal A. (2007): A novel technique for the measurement of liquid viscosity. Journal of Food Engineering, 80, 1194-1198 https://doi.org/10.1016/j.jfoodeng.2006.09.009
 
Santos J.C.O., Santos I.M.G., Souza A.G. (2005): Effect of heating and cooling on rheological parameters of edible vegetable oils. Journal of Food Engineering, 67, 401-405 https://doi.org/10.1016/j.jfoodeng.2004.05.007
 
Simuang Jaruwan, Chiewchan Naphaporn, Tansakul Ampawan (2004): Effects of fat content and temperature on the apparent viscosity of coconut milk. Journal of Food Engineering, 64, 193-197 https://doi.org/10.1016/j.jfoodeng.2003.09.032
 
Steffe J.F. (1996): Introduction to rheology. In: Rheological Methods in Food Process Engineering. Freeman Press, East Lansing, USA.
 
Tat Mustafa E., Van Gerpen Jon H. (1999): The kinematic viscosity of biodiesel and its blends with diesel fuel. Journal of the American Oil Chemists' Society, 76, 1511-1513 https://doi.org/10.1007/s11746-999-0194-0
 
M. E. Tat , J. H. Van Gerpen , P. S. Wang (2007): Fuel Property Effects on Injection Timing, Ignition Timing, and Oxides of Nitrogen Emissions from Biodiesel-Fueled Engines. Transactions of the ASABE, 50, 1123-1128 https://doi.org/10.13031/2013.23621
 
Tchiegang C., Noutchogoue V. K., Mbofung C. M., Kapseu C. (2000): Variation dansnles caracteristiques physicochemiques des fruits de Canarium schweifurthii Engl. de differentes provenances du Cameroun. Rivista Italiana Sostanze Grasse, 77: 537–542.
 
Tchouamo I.R., Tchoumboué J., Pinta, J.Y., Njoukam R. (2000): L’aiélé (Canarium schweinfurthii Engl.): plante oléagineuse à usages multiples en Afrique. Rivista Italiana Sostanze Grasse, 77: 677–680.
 
Wan Nik W.B., Ani F.N., Masjuki H.H., Eng Giap S.G. (2005): Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Industrial Crops and Products, 22, 249-255 https://doi.org/10.1016/j.indcrop.2005.01.005
 
Z. Yuan , C. Y. Choi , P. M. Waller , P. Colaizzi (2000): EFFECTS OF LIQUID TEMPERATURE AND VISCOSITY ON VENTURI INJECTORS. Transactions of the ASAE, 43, 1441-1447 https://doi.org/10.13031/2013.3042
 
Abramovic H., Klofutar C. (1998): The temperature dependence of dynamic viscosity for some vegetable oils. ActaChimica Slovenica, 45: 69–77.
 
Lokumcu Altay Filiz, Ak M Mehmet (2005): Effects of temperature, shear rate and constituents on rheological properties of tahin (sesame paste). Journal of the Science of Food and Agriculture, 85, 105-111 https://doi.org/10.1002/jsfa.1945
 
Al-Zahrani Saeed M., Al-Fariss Tariq F. (1998): A general model for the viscosity of waxy oils. Chemical Engineering and Processing: Process Intensification, 37, 433-437 https://doi.org/10.1016/S0255-2701(98)00047-6
 
Becker Klaus, Makkar H. P. S. (2008): Jatropha curcas: A potential source for tomorrow' s oil and biodiesel. Lipid Technology, 20, 104-107 https://doi.org/10.1002/lite.200800023
 
Demirbas A. (2008). Biodiesel: A Realistic Fuel Alternative for Diesel Engines. Springer. Verlag London Limited: 102–105.
 
Diamante Lemuel M., Lan Tianying (2014): Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s 1. Journal of Food Processing, 2014, 1-6 https://doi.org/10.1155/2014/234583
 
Edou E.P., Abdoul-Latif F.M., Obame L.C., Mewono L., Agnaniet H. (2012): Volatile constituents of Canarium schweinfurthii Engl. essential oil from Gabon. International Journal of AgriScience, 2: 200–203.
 
Eromosele C.O, Paschal N.H (2003): Characterization and viscosity parameters of seed oils from wild plants. Bioresource Technology, 86, 203-205 https://doi.org/10.1016/S0960-8524(02)00147-5
 
Esteban Bernat, Riba Jordi-Roger, Baquero Grau, Rius Antoni, Puig Rita (2012): Temperature dependence of density and viscosity of vegetable oils. Biomass and Bioenergy, 42, 164-171 https://doi.org/10.1016/j.biombioe.2012.03.007
 
Fasina O.O., Colley Z. (2008): Viscosity and Specific Heat of Vegetable Oils as a Function of Temperature: 35°C to 180°C. International Journal of Food Properties, 11, 738-746 https://doi.org/10.1080/10942910701586273
 
Foidl N., Foidl G., Sanchez M., Mittelbach M., Hackel S. (1996). Jatropha curcas L. as a source of production of biofuel in Nicaragua. Bioresource. Technology, 58: 77–82.
 
Ibemesi J.A. (1993): Potential of melon seed oil in development of alkyd resin Nigeria Journal of Science, 27: 299–304.
 
István B., Ioan-Adrian T. (2011): Biodiesel quality, standards and properties. In: Montero G. (ed.): Biodiesel Quality, Emissions And By-Products. Available at http://www.intechopen.com/books/biodiesel-quality-emissions-and-by-products/biodiesel-qualitystandards-and-properties
 
Keshvadi A., Bin Endan J., Harun H., Ahmad D., Saleena F. (2012): The reflection of moisture content on palm oil development during the ripening process of fresh fruits. Journal of Food, Agriculture and Environment, 10: 203–209.
 
Knothe Gerhard, Steidley Kevin R. (2005): Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84, 1059-1065 https://doi.org/10.1016/j.fuel.2005.01.016
 
Lemuel M.D.,d Tianying L. (2014): Absolute viscosities of vegetable oils at different temperatures and shear rate range of 64.5 to 4835 s−1. Journal of Food Processing, Article ID 234583.
 
Mohsenin N.N. (1986). Physical Properties of Plant and Animal Materials. Gordon and Breach, New York, NY: 196–224.
 
Noureddini H., Teoh B. C., Davis Clements L. (1992): Viscosities of vegetable oils and fatty acids. Journal of the American Oil Chemists' Society, 69, 1189-1191 https://doi.org/10.1007/BF02637678
 
Onimawo I. A., Adukwu B.I. (2003): Proximate Composition and Selected Physicochemical Properties of the Fruits of Canarium schweifurthii Linn. African Journal of Science and Technology, 4, - https://doi.org/10.4314/ajst.v4i1.15247
 
Orwa C., Mutua A., Kindt R., Jamnadass R, Simons A. (2009): Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.
 
Sadat Anwar, Khan Iqbal A. (2007): A novel technique for the measurement of liquid viscosity. Journal of Food Engineering, 80, 1194-1198 https://doi.org/10.1016/j.jfoodeng.2006.09.009
 
Santos J.C.O., Santos I.M.G., Souza A.G. (2005): Effect of heating and cooling on rheological parameters of edible vegetable oils. Journal of Food Engineering, 67, 401-405 https://doi.org/10.1016/j.jfoodeng.2004.05.007
 
Simuang Jaruwan, Chiewchan Naphaporn, Tansakul Ampawan (2004): Effects of fat content and temperature on the apparent viscosity of coconut milk. Journal of Food Engineering, 64, 193-197 https://doi.org/10.1016/j.jfoodeng.2003.09.032
 
Steffe J.F. (1996): Introduction to rheology. In: Rheological Methods in Food Process Engineering. Freeman Press, East Lansing, USA.
 
Tat Mustafa E., Van Gerpen Jon H. (1999): The kinematic viscosity of biodiesel and its blends with diesel fuel. Journal of the American Oil Chemists' Society, 76, 1511-1513 https://doi.org/10.1007/s11746-999-0194-0
 
M. E. Tat , J. H. Van Gerpen , P. S. Wang (2007): Fuel Property Effects on Injection Timing, Ignition Timing, and Oxides of Nitrogen Emissions from Biodiesel-Fueled Engines. Transactions of the ASABE, 50, 1123-1128 https://doi.org/10.13031/2013.23621
 
Tchiegang C., Noutchogoue V. K., Mbofung C. M., Kapseu C. (2000): Variation dansnles caracteristiques physicochemiques des fruits de Canarium schweifurthii Engl. de differentes provenances du Cameroun. Rivista Italiana Sostanze Grasse, 77: 537–542.
 
Tchouamo I.R., Tchoumboué J., Pinta, J.Y., Njoukam R. (2000): L’aiélé (Canarium schweinfurthii Engl.): plante oléagineuse à usages multiples en Afrique. Rivista Italiana Sostanze Grasse, 77: 677–680.
 
Wan Nik W.B., Ani F.N., Masjuki H.H., Eng Giap S.G. (2005): Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Industrial Crops and Products, 22, 249-255 https://doi.org/10.1016/j.indcrop.2005.01.005
 
Z. Yuan , C. Y. Choi , P. M. Waller , P. Colaizzi (2000): EFFECTS OF LIQUID TEMPERATURE AND VISCOSITY ON VENTURI INJECTORS. Transactions of the ASAE, 43, 1441-1447 https://doi.org/10.13031/2013.3042
 
download PDF

© 2019 Czech Academy of Agricultural Sciences