The coupling of hillslope- and gully-erosion increases their controlling efforts: A case study in Liaoning Province, China

Fan X.G., Fan H.M., Dong S. (2022): The coupling of hillslope- and gully-erosion increases their controlling efforts: A case study in Liaoning Province, China. Soil & Water Res., 17: 123−137.

download PDF

The widespread hillslope- and gully-erosion in Liaoning Province of Northeast China, pose serious challenges to the local agricultural production. Hillslope- and gully-erosion have typically been studied separately; however, there has been little investigation on the relationship of these two types of erosion. In this study, the coupling relationship of the hillslope- and gully-erosion from the perspectives of erosion intensity and land use, as well as the slope gradient, aspect, and shape, was analysed. The study employed remote sensing and geographic information system techniques, and the universal soil loss equation and kriging were used to perform a macroscopic analysis. The results showed that gully-erosion was more severe compared with hillslope-erosion in the study area. The cultivated land has the highest level of human activities, therefore, the most intense hillslope- and gully-erosion. The threshold slope gradients for the hillslope- and gully-erosion are 14° and 6°, respectively. Above the threshold of 6°, the slope gradient is no longer the primary factor affecting the gully-erosion. Sunny slopes have observably more hillslope-erosion than shady slopes, and the highest hillslope-erosion is observed on the south-southeast-facing slopes. The effect of the slope aspect on the gully-erosion should not be ignored, as evidenced by the considerable gully density of the east-northeast-facing slopes which is obviously higher than for slopes with other slope aspects. The highest hillslope-erosion amount and gully density occur on concave slopes, followed by convex and straight slopes, and straight slopes have little effect on the hillslope-erosion, but have a marked impact on the gully-erosion. The results of this work may serve as  a  scientific reference for the comprehensive control of soil erosion across a slope-gully system in Northeast China.

Achten W.M.J., Dondeyne S., Mugogo S., Kafiriti E., Poesen J., Deckers J., Muys B. (2008): Gully erosion in South Eastern Tanzania: Spatial distribution and topographic thresholds. Zeitschrift für Geomorphologie, 52: 225–235.
Aderemi A., Iyamu F. (2012): Risk assessment analysis of accelerated gully erosion in Ikpoba Okha local government area of Edo State, Nigeria. Environment and Natural Resources Research, 3: 68–76.
Al-Abadi A.M., Al-Ali A.K. (2018): Susceptibility mapping of gully erosion using GIS-based statistical bivariate models: A case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq. Environmental Earth Sciences, 77: 249–269.
Alireza A., Biswajeet P., Khalil R., Mojtaba Y., Reza P.H., Luigi L. (2018): Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function-logistic regression algorithm. Land Degradation & Development, 29: 4035–4049.
Anderson J.R., Thampapillai J. (1990): Soil conservation in developing countries. Social and Economic Studies, 39: 201–204.
Anees M.T., Abdullah K., Nawawi M.N.M., Norulaini N.A.N., Syakir M.I., Omar A.K.M. (2018): Soil erosion analysis by RUSLE and sediment yield models using remote sensing and GIS in Kelantan state, Peninsular Malaysia. Soil Research, 56: 356–372.
Avijit M. (2018): Soil erosion estimation using RUSLE and GIS techniques – A study of  a  plateau fringe region of tropical environment. Arabian Journal of Geosciences, 11: 335–353.
Bartsch K.P., Miegroet H., Boettinger J., Dobrowolski J.P. (2002): Using empirical erosion models and GIS to determine erosion risk at Camp Williams. Journal of Soil & Water Conservation, 57: 29–37.
Boggs G., Devonport C., Evans K., Puig P. (2001): GIS-based rapid assessment of erosion risk in a small catchment in the wet/dry tropics of Australia. Land Degradation & Development, 12: 417–434.
Cai C.F., Ding S.W., Shi Z.H., Huang L., Zhang G.Y. (2000): Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed. Journal of Soil and Water Conservation, 14: 19–24. (in Chinese)
Chen H., Fang H.Y., Cai Q.G., Lei T.W., Liang G.L. (2006): Comparison of different aspect of erosion evolvement in the Loess Hilly Area: A case study of Wangjiagou catchment of Western Shanxi Province. Resources Science, 28: 176–184. (in Chinese)
Chen J., Zhang X.J., Li Q.Y., Tao J.P. (2022): Relationships between competition intensity and leaf phenotypic plasticity of woody plants in subalpine forests on different slope directions. Acta Ecologica Sinica, 42: 1–10. (in Chinese)
Chen Z.F., Shi D.M., Guo H.Z., Jiang G.Y., Tang X.W. (2011): Study on response of slope erosion characteristics in Purple Hilly Region. Journal of Soil and Water Conservation, 25: 52–57. (in Chinese)
Conoscenti C., Angileri S., Cappadonia C., Rotigliano E., Agnesi V., Maerker M. (2014): Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204: 4035–4049.
Costa F.M., Bacellar L.D.A.P. (2007): Analysis of the influence of gully erosion in the flow pattern of catchment streams, Southeastern Brazil. Catena, 69: 230–238.
Daba S., Rieger W., Strauss P. (2003): Assessment of gully erosion in eastern Ethiopia using photogra-mmetric techniques. Catena, 50: 273–291.
Dabral P.P., Baithuri N., Pandey A. (2008): Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing. Water Resources Management, 22: 1783–1798.
Fan J.R., Wang N.Z., Chen G., Jiao J., Xie Y. (2011): Practice factor of soil and water conservation in Northeastern China. Science of Soil and Water Conservation, 9: 75–78. (in Chinese)
Fistikoglu O., Harmancioglu N.B. (2002): Integration of GIS with USLE in assessment of soil erosion. Water Resoures Management, 16: 447–467.
Ganasri B.P., Ramesh H. (2016): Assessment of soil erosion by RUSLE model using remote sensing and GIS – A case study of Nethravathi Basin. Geoscience Frontiers, 7: 953–961.
Grepperud S. (1995): Soil conservation and governmental policies in tropical areas: Does aid worsen the incentives for arresting erosion. Agricultural Economics, 12: 129–140.
Guan C., Zhang S.W., Wang R.H., Yang J.C., Yue S.P., Yu L.X., Wang W. (2019): Coupling analysis between ridge direction and gully erosion of sloping cultivated lands in the Sancha River watershed. Resources Science, 41: 394–404. (in Chinese)
Hu G., Wu Y.Q., Liu B.Y., Yu Z.T., You Z.M., Zhang Y.G. (2007): Short-term gully retreat rates over rolling-hill areas in Black Soil of Northeast China. Catena, 71: 321–329.
Jha V.C., Kapat S. (2009): Rill and gully erosion risk of lateritic terrain in South-Western Birbhum District, West Bengal, India. Revista Sociedade & Natureza, 21: 141–158.
Jia Y.F., Wu M., Liu M.B. (2019): Soil erosion characteristics of different land use types in thawing period in hilly areas of Northeast China. Journal of Shenyang Agricultural University, 50: 747–752. (in Chinese)
Karamage F., Zhang C., Kayiranga A., Shao H., Fang X., Ndayisaba F., Nahayo L., Mupenzi C., Tian G.J. (2016): USLE-based assessment of soil erosion by water in the Nyabarongo river catchment, Rwanda. Environment Research and Public Health, 13: 835–851.
Li M. J., Li T. Q., Zhu L. Q., Zhang S.W., Zhu W.B., Zhang J.J. (2019): Effect of land use change on gully erosion in black soil region of Northeast China in the past 50 years: A case study in Kedong county. Geographical Research, 38: 2913–2926. (in Chinese)
Liu B.Y. (2003): Discussion on problems about soil degradation and sustainable utilization in typical black soil region. Soil and Water Conservation in China, 12: 28–29. (in Chinese)
Liu B.Y., Nearing M.A., Risse L.M. (1994): Slope gradient effects on soil loss for steep slopes. Transactions of the ASAE, 37: 1835–1840. (in Chinese)
Liu X.J., Jing G C. (1999): Preliminary research on the main form character of ravine freeze-thaw erosion in Kebai black soil region. Scientific and Technical Information of Soil and Water Conservation, 1: 28–30. (in Chinese)
Mi W.J., Zhang F., Jia Y., Ding F.L., Zhang X.B., Fang Z.H., Sun M.H. (2021): Slope aspect difference in slope green plant protection in Ningxia section of Yinchuan-Xi'an high-speed railway. Journal of Railway Engineering Society, 9: 87–92. (in Chinese)
Oparaku L.A., Iwar R.T. (2018): Relationships between average gully depths and widths on geological sediments underlying the Idah-Ankpa Plateau of the North Central Nigeria. International Soil and Water Conservation Research, 6: 43–50.
Pan M.H., Wu Y.Q., Ren F.P. (2012): Estimating soil erosion in the Dongjiang river basin based on USLE. Journal of Natural Resources, 25: 2154–2164. (in Chinese)
Poesen J., Nachtergaele J., Verstraeten G., Valentin C. (2003): Gully erosion and environmental change: importance and research needs. Catena, 50: 91–133.
Ranzi R., Le T.H., Rulli M.C. (2012): A RUSLE approach to model suspended sediment load in the to river (Vietnam): Effects of reservoirs and land use changes. Journal of Hydrology, 422: 17–29.
Rawat K.S., Mishra A.K., Bhattacharyya R. (2016): Soil erosion risk assessment and spatial mapping using LANDSAT-7 ETM+, RUSLE, and GIS-a case study. Arabian Journal of Geosciences, 9: 1–22.
Renard K.G., Foster G.R., Weesies G.A., Mccool D.K., Yoder D.C. (1997): Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook, 702: 107.
Seutloali K.E., Beckedahl H.R., Dube T., Sibanda M. (2016): An assessment of gully erosion along major armoured roads in south-eastern region of South Africa: A remote sensing and GIS approach. Geocarto International, 31: 225–239.
Shen B., Fan J.R., Pan Q.B., Hui L.J. (2003): The situation of comprehensive prevention and control pilot project of soil erosion in Black Soil Area of Northeast China. Soil and Water Conservation in China, 11: 7–8. (in Chinese)
Shirazi M.A., Boersma L. (1984): A unifying quantitative analysis of soil texture. Soil Science society of America Journal, 48: 142–147.
Song X.F., Duan Z., Niu H.S., Yasuyuki K. (2009): Estimation of the cover and management factor for modeling soil erosion using remote sensing. Journal of Beijing Forestry University, 31: 58–63. (in Chinese)
Thampapillai D.J., Anderson J.R. (1994): A review of the socio-economic analysis of soil degradation problems for developed and developing countries. Review of Marketing & Agricultural Economics, 62: 291–315.
Wang D.C., Fan H.M. (2019): Distribution characteristics of gullies with slope gradient in Northeast China. Environmental Monitoring and Assessment, 191: 379.
Wang D.C., Fan H.M., Fan X.G. (2017): Distributions of recent gullies on hillslopes with different slopes and aspects in the black soil region of Northeast China. Environmental Monitoring and Assessment, 189: 508.
Wang P., Ding Z. Q., Hua H.L., Li Y.H., Duan X. (2021): Geomorphological characteristics and their impacts on land use. Patterns in Laoshan Nature Reserve of Yunnan Province. Bulletin of Soil and Water Conservation, 41: 287–295. (in Chinese)
Wang W.J., Zhang S.W., Fang H.Y. (2012): Coupling mechanism of slope-gully erosion in typical black soil area of Northeast China. Journal of Natural Resources, 27: 2113–2122. (in Chinese)
Wang W.J., Deng R.X., Zhang S.W. (2014): Preliminary research on risk evaluation of gully erosion in typical black soil area of Northeast China. Journal of Natural Resources, 29: 2058–2067. (in Chinese)
Wu Y.Q., Zheng Q.H., Zhang Y.G., Liu B.Y., Cheng H., Wang Y.Z. (2008): Development of gullies and sediment production in the black soil region of Northeastern China. Geomorphology, 101: 683–691.
Xia L., Song X.Y., Fu N., Meng C.F., Li H.Y., Li Y.L. (2017): Impacts of precipitation variation and soil and water conservation measures on runoff and sediment yield in the Loess Plateau Gully Region, China. Journal of Mountain Science, 14: 2028–2041.
Xu Y.Q., Shao X.M., Kong X.B., Peng J., Cai Y.L. (2008): Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environmental Monitoring and Assessment, 141: 275–286.
Yan Y.C., Zhang S.W., Li X.Y., Yue S.P. (2005): Temporal and spatial variation of erosion gullies in Kebai Black Soil Region of Heilongjiang during the past 50 years. Scientia Geographica Sinica, 60: 1015–1020. (in Chinese)
Yan Y.C., Zhang S.W., Yue S.P. (2006): Application of corona and spot imagery on erosion gully research in typical black soil regions of Northeast China. Resources Science, 28: 154–160. (in Chinese)
Yan Y.C., Zhang S.P., Yue S.P. (2007): Classification of erosion gullies by remote sensing and spatial pattern analysis in black soil region of Eastern Kebai. Scientia Geographica Sinica, 27: 193–199. (in Chinese)
Yang D.L., Wang Z.C., Hu W.M., Cao D., Liu H. (2020): Survey of remote sensing image information extraction methods in rocky desertification areas. Safety and Environmental Engineering, 27: 137–145. (in Chinese)
Yang Q.K., Guo W.L., Zhang H.M., Wang L., Cheng L., Li J. (2010): Method of extracting LS factor at watershed scale based on DEM. Bulletin of Soil and Water Conservation, 30: 203–206 + 211. (in Chinese)
Yu X.J., Wei Y.M. (2010): Study on soil erosion characters in different slopes. Research of Soil and Water Conservation, 17: 103–106. (in Chinese)
Yuan L.F., Yang G.S., Zhang Q.F., Li H.P. (2016): Soil erosion assessment of the Poyang lake basin, China: Using USLE, GIS and remote sensing. Journal of Remote Sensing & GIS, 5: 2469–4134.
Zhang H.M., Yang Qi. K., Li R., Liu Q.R. (2012): Research on the estimation of slope length in distributed watershed erosion. Journal of Hydraulic Engineering, 43: 437–444. (in Chinese)
Zhang K.L., Peng W.Y., Yang H.L. (2007): Soil erodibility and its estimation for agricultural soil in China. Acta Pedologica Sinica, 44: 7–13. (in Chinese)
Zhang T., Liu G., Duan X., Wilson G.V. (2016): Spatial distribution and morphologic characteristics of gullies in the Black Soil Region of Northeast China: Hebei watershed. Physical Geography, 37: 228–250.
Zhang W.B., Xie Y., Liu B.Y. (2002): Rainfall erosivity estimation using daily rainfall amounts. Scientia Geographica Sinica, 22: 705–711. (in Chinese)
Zhang X.H., Hou W.Z, Wang N. (2006): C-value in the model of soil erosion in black earth area in the Northeastern China. Journal of Agro-Environment Science, 25: 797–801. (in Chinese)
Zhang X.K., Xu J.H., Lu X.Q., Deng Y.J. (1992): A study on the equation in Heilongjiang Province. Bulletin of Soil and Water Conservation, 12: 1–10.
Zhang Y.G., Wu Y.Q., Liu B.Y., Zheng Q.H., Yin J.Y. (2007): Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil & Tillage Research, 96: 28–41.
Zhang Y., Wu Y.H., Zhang J.Q., Hang R., Zhao F. (2021): Effects of slope aspects on soil nutrient characteristics at rain-fed ecological experiment demonstration site in Lanzhou. GrasslandandTurf, 41: 87–92. (in Chinese)
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti