Effects of rock fragments on the water infiltration and hydraulic conductivity in the soils of the desert steppes of Inner Mongolia, China


Wu X., Meng Z., Dang X., Wang J. (2021): Effects of rock fragments on the water infiltration and hydraulic conductivity in the soils of the desert steppes of Inner Mongolia, China. Soil & Water Res., 16: 151163.

download PDF

Soils that contain rock fragments (particles > 2 mm in diameter) are distributed all over the world. The presence of these small rock fragments can have a great impact on soil water retention properties, as well as on the soil-water infiltration and vegetation restoration in semi-arid regions. To quantitatively describe the transport of water in stony soils, repacked soil cores were used to determine the infiltration rates for different rock fragment contents (0%, 10%, 20%, 30%, and 40%) and rock fragment sizes (2–5, 5–8, 8–11, and 2–11 mm). The results showed that both the content and size of the rock fragments and their interaction significantly affected the infiltration process. The infiltration rates over time and the saturated hydraulic conductivity (Ks) decreased with an increasing rock fragment content to an observed minimum value for a 40% rock fragment content. The soil-water infiltration processes were accurately described by the Kostiakov model. The measured and calculated Ks values decreased with an increasing rock fragment content, which was in accordance with the published data and in accordance with the Ks obtained by five empirical methods. The variations in the measured Ks were likely due to the variations in the soil properties caused by the soil sample repacking. The results of this study may improve the understanding of the effects of the rock fragment content and size on the infiltration processes in arid and semi-arid desert steppes.

Al-Qinna M., Scott H.D., Brye K.R., Van Brahana J., Sauer T.J., Sharpley A. (2014): Coarse fragments affect soil properties in a mantled-karst landscape of the Ozark Highlands. Soil Science, 179: 42–50. https://doi.org/10.1097/SS.0000000000000034
Bagarello V., Elrick D.E., Iovino M., Sgroi A. (2006): A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils. Geoderma, 135: 322–334. https://doi.org/10.1016/j.geoderma.2005.12.008
Ban Y., Lei T., Feng R., Qian D. (2017a): Effect of stone content on water flow velocity over Loess slope: Frozen soil. Journal of Hydrology, 554: 792–799. https://doi.org/10.1016/j.jhydrol.2017.09.038
Ban Y., Lei T., Gao Y., Qu L. (2017b): Effect of stone content on water flow velocity over Loess slope: non-frozen soil. Journal of Hydrology, 549: 525–533. https://doi.org/10.1016/j.jhydrol.2017.03.069
Beckers E., Pichault M., Pansak W., Degré A., Garré S. (2016): Characterization of stony soils’ hydraulic conductivity using laboratory and numerical experiments. Soil, 2: 421–431. https://doi.org/10.5194/soil-2-421-2016
Bouwer H., Rice R. (1984): Hydraulic properties of stony vadose zones. Ground Water, 22: 696–705. https://doi.org/10.1111/j.1745-6584.1984.tb01438.x
Brakensiek D., Rawls W., Stephenson G. (1986): Determining the saturated hydraulic conductivity of a soil containing rock fragments. Soil Science Society of America Journal, 50: 834–835. https://doi.org/10.2136/sssaj1986.03615995005000030053x
Brouwer J., Anderson H. (2000): Water holding capacity of ironstone gravel in a typic plinthoxeralf in southeast Australia. Soil Science Society of America Journal, 64: 1603–1608. https://doi.org/10.2136/sssaj2000.6451603x
Chen H., Liu J., Zhang W., Wang K. (2012): Soil hydraulic properties on the steep karst hillslopes in northwest Guangxi, China. Environmental Earth Sciences, 66: 371–379. https://doi.org/10.1007/s12665-011-1246-y
Childs S.W., Flint A.L. (1990): Physical properties of forest soils containing rock fragments. In: Gessel S.P., Lacate D.S., Weetman G.F., Power R.F. (eds): Sustained Productivity of Forest Soils. Proc. 7th North American Forest Soils Conf., Vancouver, July 24–28, 1988: 95–121.
Coppola A., Dragonetti G., Comegna A., Lamaddalena N., Caushi B., Haikal M., Basile A.J.S., Research T. (2013): Measuring and modeling water content in stony soils. Soil and Tillage Research, 128: 9–22. https://doi.org/10.1016/j.still.2012.10.006
Cousin I., Nicoullaud B., Coutadeur C. (2003): Influence of rock fragments on the water retention and water percolation in a calcareous soil. Catena, 53: 97–114. https://doi.org/10.1016/S0341-8162(03)00037-7
Danalatos N., Kosmas C., Moustakas N., Yassoglou N. (1995): Rock fragments II. Their impact on soil physical properties and biomass production under Mediterranean conditions. Soil Use and Management, 11: 121–126. https://doi.org/10.1111/j.1475-2743.1995.tb00509.x
Du H., Zuo X., Li S., Wang T., Xue X. (2019): Wind erosion changes induced by different grazing intensities in the desert steppe, Northern China. Agriculture, Ecosystems & Environment, 274: 1–13.
Ebel B.A., Moody J.A. (2013): Rethinking infiltration in wildfire-affected soils. Hydrological Processes, 27: 1510–1514. https://doi.org/10.1002/hyp.9696
Gargiulo L., Mele G., Terribile F. (2016): Effect of rock fragments on soil porosity: a laboratory experiment with two physically degraded soils. European Journal of Soil Science, 67: 597–604. https://doi.org/10.1111/ejss.12370
Golledge N.R. (2014): Selective erosion beneath the Antarctic Peninsula Ice Sheet during LGM retreat. Antarctic Science, 26: 698–707. https://doi.org/10.1017/S0954102014000340
Gong T., Zhu Y., Shao M.A. (2018): Effect of embedded-rock fragments on slope soil erosion during rainfall events under simulated laboratory conditions. Journal of Hydrology, 563: 811–817. https://doi.org/10.1016/j.jhydrol.2018.06.054
Gonzalez-Sosa E., Braud I., Dehotin J., Lassabatère L., Angulo-Jaramillo R., Lagouy M., Branger F., Jacqueminet C., Kermadi S., Michel K. (2010): Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrological Processes, 24: 2382–2399. https://doi.org/10.1002/hyp.7640
Guo T., Wang Q., Li D., Zhuang J. (2010): Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semi-arid loess region of northwestern China. Journal of Soils and Sediments, 10: 1200–1208. https://doi.org/10.1007/s11368-010-0257-8
Hlaváčiková H., Novák V. (2014): A relatively simple scaling method for describing the unsaturated hydraulic functions of stony soils. Journal of Plant Nutrition and Soil Science, 177: 560–565. https://doi.org/10.1002/jpln.201300524
Hlaváčiková H., Novák V., Šimůnek J. (2016): The effects of rock fragment shapes and positions on modeled hydraulic conductivities of stony soils. Geoderma, 281: 39–48. https://doi.org/10.1016/j.geoderma.2016.06.034
Ilek A., Kucza J., Witek W. (2019): Using undisturbed soil samples to study how rock fragments and soil macropores affect the hydraulic conductivity of forest stony soils: Some methodological aspects. Journal of Hydrology, 570: 132–140. https://doi.org/10.1016/j.jhydrol.2018.12.067
Jia X., Shao M., Yu D., Zhang Y., Binley A. (2019): Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China. Agriculture, Ecosystems & Environment, 273: 25–35.
Jiang Z., Lian Y., Qin X. (2014): Rocky desertification in Southwest China: impacts, causes, and restoration. Earth-Science Reviews, 132: 1–12. https://doi.org/10.1016/j.earscirev.2014.01.005
Jiang Z.-D., Wang Q.-B., Adhikari K., Brye K.R., Sun Z.-X., Sun F.-J., Owens P.R. (2020): A vertical profile imaging method for quantifying rock fragments in gravelly soil. Catena, 193: 104590. https://doi.org/10.1016/j.catena.2020.104590
Jomaa S., Barry D.A., Brovelli A., Heng B., Sander G.C., Parlange J.-Y., Rose C.W. (2012): Rain splash soil erosion estimation in the presence of rock fragments. Catena, 92: 38–48. https://doi.org/10.1016/j.catena.2011.11.008
Kang L., Han X., Zhang Z., Sun O.J. (2007): Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 362: 997–1008. https://doi.org/10.1098/rstb.2007.2029
Katra I., Lavee H., Sarah P. (2008): The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. Catena, 72: 49–55. https://doi.org/10.1016/j.catena.2007.04.001
Kostiakov A.N. (1932): On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration. Transactions of the 6th Committee International Society of Soil Science, Russia, Part A: 17–21.
Lewis S.A., Wu J.Q., Robichaud P.R. (2006): Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado. Hydrological Processes, 20: 1–16. https://doi.org/10.1002/hyp.5880
Liu Y., Cui Z., Huang Z., López-Vicente M., Wu G.-L. (2019): Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena, 182: 104147. https://doi.org/10.1016/j.catena.2019.104147
Luna L., Vignozzi N., Miralles I., Solé-Benet A. (2018): Organic amendments and mulches modify soil porosity and infiltration in semiarid mine soils. Land Degradation & Development, 29: 1019–1030.
Ma D., Shao M. (2008): Simulating infiltration into stony soils with a dual-porosity model. European Journal of Soil Science, 59: 950–959. https://doi.org/10.1111/j.1365-2389.2008.01055.x
Ma D., Shao M., Zhang J., Wang Q. (2010): Validation of an analytical method for determining soil hydraulic properties of stony soils using experimental data. Geoderma, 159: 262–269. https://doi.org/10.1016/j.geoderma.2010.08.001
Maestre F.T., Salguero-Gomez R., Quero J.L. (2012): It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philosophical Transcactions of the Royal Society of London, Series B, Biological Sciences, 367: 3062–3075. https://doi.org/10.1098/rstb.2011.0323
Mao T., Zhu Y., Shao M., Wu B. (2011): Characteristics of runoff and infiltration in stony soils under simulated rainfall conditions. Chinese Journal of Soil Science, 42: 1214–1218. (in Chinese)
Meng Z., Dang X., Gao Y., Ren X., Ding Y., Wang M. (2018): Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China. Journal of Arid Land, 10: 534–547. https://doi.org/10.1007/s40333-018-0059-1
Nasri B., Fouché O., Torri D. (2015): Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena, 131: 99–108. https://doi.org/10.1016/j.catena.2015.03.018
Novák V., Kňava K., Šimůnek J. (2011): Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method. Geoderma, 161: 177–181. https://doi.org/10.1016/j.geoderma.2010.12.016
Pairman D., Belliss S.E., Cuff J., McNeill S.J. (2011): Detection and mapping of irrigated farmland in Canterbury, New Zealand. In: IEEE International Geoscience and Remote Sensing Symposium, Vancouver, July 24–29, 2011: 696–699.
Peck A., Watson J.D. (1979): Hydraulic conductivity and flow in non-uniform soil. In: Workshop on Soil Physics and Field Heterogeneity, Canberra, Feb 12–14, 1979: 31–39.
Philip J.R. (1969): Theory of infiltration. Advances in Hydroscience, 5: 215–296.
Poesen J., Lavee H. (1994): Rock fragments in top soils: significance and processes. Catena, 23: 1–28. https://doi.org/10.1016/0341-8162(94)90050-7
Ravina I., Magier J. (1984): Hydraulic conductivity and water retention of clay soils containing coarse fragments. Soil Science Society of America Journal, 48: 736–740. https://doi.org/10.2136/sssaj1984.03615995004800040008x
Sauer T.J., Logsdon S.D. (2002): Hydraulic and physical properties of stony soils in a small watershed. Soil Science Society of America Journal, 66: 1947–1956. https://doi.org/10.2136/sssaj2002.1947
Shi Z., Wang Y., Yu P., Xu L., Xiong W., Guo H. (2008): Effect of rock fragments on the percolation and evaporation of forest soil in Liupan Mountains, China. Acta Ecologica Sinica, 28: 6090–6098. (in Chinese) https://doi.org/10.1016/S1872-2032(09)60014-7
Sohrt J., Ries F., Sauter M., Lange J. (2014): Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena, 123: 1–10. https://doi.org/10.1016/j.catena.2014.07.003
Tetegan M., Pasquier C., Besson A., Nicoullaud B., Bouthier A., Bourennane H., Desbourdes C., King D., Cousin I. (2012): Field-scale estimation of the volume percentage of rock fragments in stony soils by electrical resistivity. Catena, 92: 67–74. https://doi.org/10.1016/j.catena.2011.09.005
Verbist K., Baetens J., Cornelis W., Gabriels D., Torres C., Soto G. (2009): Hydraulic conductivity as influenced by stoniness in degraded drylands of Chile. Soil Science Society of America Journal, 73: 471–484. https://doi.org/10.2136/sssaj2008.0066
Wang H., Zhang G.-H., Liu F., Geng R., Wang L.-J. (2017): Temporal variations in infiltration properties of biological crusts covered soils on the Loess Plateau of China. Catena, 159: 115–125. https://doi.org/10.1016/j.catena.2017.08.009
Wang X.-P., Cui Y., Pan Y.-X., Li X.-R., Yu Z., Young M. (2008): Effects of rainfall characteristics on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems. Journal of Hydrology, 358: 134–143. https://doi.org/10.1016/j.jhydrol.2008.06.002
Wang X., Li Z., Cai C., Shi Z., Xu Q., Fu Z., Guo Z. (2012): Effects of rock fragment cover on hydrological response and soil loss from Regosols in a semi-humid environment in South-West China. Geomorphology, 151: 234–242. https://doi.org/10.1016/j.geomorph.2012.02.008
Wu G.-L., Liu Y., Yang Z., Cui Z., Deng L., Chang X.-F., Shi Z.-H. (2017): Root channels to indicate the increase in soil matrix water infiltration capacity of arid reclaimed mine soils. Journal of Hydrology, 546: 133–139. https://doi.org/10.1016/j.jhydrol.2016.12.047
Yang H., Rahardjo H., Wibawa B., Leong E.-C. (2004): A soil column apparatus for laboratory infiltration study. Geotechnical Testing Journal, 27: 347–355.
Yang Y.-F., Wang Q.-J., Zhuang J. (2013): Estimating hydraulic parameters of stony soils on the basis of one-dimensional water absorption properties. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 63: 304–313.
Yu M., Zhang L., Xu X., Feger K.H., Wang Y., Liu W., Schwärzel K. (2015): Impact of land-use changes on soil hydraulic properties of Calcaric Regosols on the Loess Plateau, NW China. Journal of Plant Nutrition and Soil Science, 178: 486–498. https://doi.org/10.1002/jpln.201400090
Zavala L.M., Jordán A., Bellinfante N., Gil J. (2010): Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment. Soil Science and Plant Nutrition, 56: 95–104. https://doi.org/10.1111/j.1747-0765.2009.00429.x
Zhang Y., Zhang M., Niu J., Li H., Xiao R., Zheng H., Bech J. (2016): Rock fragments and soil hydrological processes: significance and progress. Catena, 147: 153–166. https://doi.org/10.1016/j.catena.2016.07.012
Zhou B.B., Shao M.A., Shao H.B. (2009): Effects of rock fragments on water movement and solute transport in a Loess Plateau soil. Comptes Rendus Geoscience, 341: 462–472.  https://doi.org/10.1016/j.crte.2009.03.009
Zhou B.B., Shao M.A., Wang Q.J., Yang T. (2011): Effects of different rock fragment contents and sizes on solute transport in soil columns. Vadose Zone Journal, 10: 386–393. https://doi.org/10.2136/vzj2009.0195
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti