Possibilities of including surface runoff barriers in the slope-length factor calculation in the GIS environment and its integration in the user-friendly LS-RUSLE tool
Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R. (1998): Large area hydrologic modelling and assessment Part I: model development. JAWRA Journal of the American Water Resources Association, 34: 73–89
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Atlas DMT (2019): Erosion Module Atlas DMT. Available at: http://www.atlasltd.cz/eroze.html
Bosch D., Theurer F., Bingner R., Felton G., Chaubey I. (1998): Evaluation of the AnnAGNPS water quality model. In: Parsons J.E., Thomas D.L., Huffman R.L. (eds.): Agricultural Non-Point Source Water Quality Models: Their Use and Application. Florida, CSREES and EWRI: 45–54.
Chlada F., Dumbrovský M. (2000): Program ERCN, Ver. 2.0. VÚMOP, Prague. (in Czech)
Desmet P.J.J., Govers G. (1996): A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51: 427–433.
Dumbrovský M., Drbal K., Sobotková V., Uhrová J. (2020): An approach to identifying and evaluating the potential formation of ephemeral gullies in the conditions of the Czech Republic. Soil and Water Research, 15: 38–46.
https://doi.org/10.17221/231/2018-SWR
Dunn M., Hickey R. (1998): The effect of slope algorithms on slope estimates within a GIS. Cartography, 27: 9–15.
https://doi.org/10.1080/00690805.1998.9714086
Fairfield J., Leymarie P. (1991): Drainage networks from grid digital elevation models. Water Resources Research, 27: 709–717.
https://doi.org/10.1029/90WR02658
Ferro V., Minacapilli M. (1995): Sediment delivery processes at basin scale. Hydrological Sciences Journal, 40: 703–717.
https://doi.org/10.1080/02626669509491460
Foster G.R., Wischmeier W. (1974): Evaluating irregular slopes for soil loss prediction. Transactions of the ASAE, 17: 305–309.
https://doi.org/10.13031/2013.36846
Freeman T.G. (1991): Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences, 17: 413–422.
https://doi.org/10.1016/0098-3004(91)90048-I
Griffin M.L., Beasley D.B., Fletcher J.J., Foster G.R. (1988): Estimating soil loss on topographically nonuniform field and farm units. Journal of Soil and Water Conservation, 43: 326–331.
Hickey R. (2000): Slope angle and slope length solutions for GIS. Cartography, 29: 1–8.
https://doi.org/10.1080/00690805.2000.9714334
Hickey R., Smith A., Jankowski P. (1994): Slope length Calculations from a DEM with in ARC/INFO GRID. Computers, Environment and Urban Systems, 18: 365–380.
https://doi.org/10.1016/0198-9715(94)90017-5
Hrabalíková M., Janeček M. (2017): Comparison of different approaches to LS factor calculations based on a measured soil loss under simulated rainfall. Soil and Water Research, 12: 69–77.
https://doi.org/10.17221/222/2015-SWR
Jenson S.K., Dominique J.O. (1988): Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54: 1593–1600.
Karydas G.Ch., Panagos P. (2016): Modelling monthlysoil losses and sediment yields in Cyprus. International Journal of Digital Earth, 9: 766–787.
https://doi.org/10.1080/17538947.2016.1156776
Kinnell P.I.A. (2008): Sediment delivery from hillslopes and the universal soil loss equation: some perceptions and misconceptions. Hydrological Processes, 22: 3168–3175.
https://doi.org/10.1002/hyp.6903
Knisel W.G. (1980): Creams: A Field Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems. Conservation Research Report No. 26, US Departement of Agriculture.
Littleboy M., Freebairn D.M., Hammer G.L., Silburn D.M. (1992): Impact of soil-erosion on production in cropping systems simulation of production and erosion risks for a wheat cropping system. Australian Journal of Soil Research, 30: 775–788.
https://doi.org/10.1071/SR9920775
Liu B.Y., Zhang K.L., Xie Y. (2002): An empirical soil loss equation. In: Proc. 12th ISCO, Beijing, May 26–31, 2002: 143–149.
McCool D.K. (1987): Revised slope steepness factor for the universal soil loss equation. Transactions of the ASAE, 30: 1387–1399.
https://doi.org/10.13031/2013.30576
McCool D.K., Foster G.R., Weesies G.A. (1997): slope length and steepness factors (LS). Chapter 4. In: Renard K.G. (ed.): Predicting Soil Erosion by Water : A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, D.C., USDA, Agricultural Research Service: 101−141.
Mitášová H., Mitáš L. (1999): Modelling Soil Detachment with RUSLE 3D Using GIS. University of Illinois at Urbana-Champaign. Available at: http:// skagit.meas.ncsu.edu/~helena/gmslab/erosion/usle.html
Mitášová H., Hofierka J., Zlocha M., Iverson L.R. (1996): Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems, 10: 629–641.
https://doi.org/10.1080/02693799608902101
Mitasova H., Mitas L., Brown W.M., Johnston D. (1998): Multidimensional Soil Erosion/Deposition Modeling and Visualization Using GIS. Final report for USA CERL. Urbana-Champaign, University of Illinois.
Moore I.D., Burch G.J. (1986): Physical basis of the length-slope factor in the universal soil loss equation. Soil Science Society of America Journal, 50: 1294–1298.
https://doi.org/10.2136/sssaj1986.03615995005000050042x
Moore I.D., Wilson J.P. (1992): Length-slope factors for the revised universal soil loss equation: simplified method of estimation. Journal of Soil and Water Conservation, 47: 423–428.
Moore I.D., Grayson R.B., Landson A.R. (1991): Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5: 3–30.
https://doi.org/10.1002/hyp.3360050103
O'Callaghan J.F., Mark D.M. (1984): The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28: 323–344.
https://doi.org/10.1016/S0734-189X(84)80011-0
Orlandini S., Moretti G., Franchini M., Aldighieri B., Testa B. (2003): Path-based methods for the determination of non-dispersive drainage directions in grid-based digital elevation models. Water Resource Research, 39: 1144–1151.
https://doi.org/10.1029/2002WR001639
Panagos P., Christos K., Cristiano B., Ioannis G. (2014): Seasonal monitoring of soil erosion at regional scale: An application of the G2 model in Crete focusing on agricultural land uses. International Journal of Applied Earth Observation and Geoinformation, 27: 147–155.
https://doi.org/10.1016/j.jag.2013.09.012
Panagos P., Borrelli P., Meusburger K. (2015): A new european slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences, 5: 117–126.
https://doi.org/10.3390/geosciences5020117
Pathak P. (1991): Runoff sampler for small agricultural watersheds. Agricultural Water Management, 19: 105–115.
https://doi.org/10.1016/0378-3774(91)90002-Z
Quinn P., Beven K., Chevallier P., Planchon O. (1991): The prediction of hillslope flowpaths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5: 59–79.
https://doi.org/10.1002/hyp.3360050106
Quinn P., Beven K., Lamb R. (1995): The in(a/tan/β) index: How to calculate it and how to use it within the topmodel framework. Hydrological Processes, 9: 161–182.
https://doi.org/10.1002/hyp.3360090204
Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. (1997): Predicting Soil Erosion by Water : A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook No. 703, Washington, D.C., USDA, Agricultural Research Service.
Rodriguez J.L.G., Suarez M.C.G. (2010): Methodology for estimating the topographic factor LS of RUSLE3D and USPED using GIS. Geomorphology, 175: 98–106.
Seibert J., McGlynn B.L. (2007): A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research, 43: W04501.
https://doi.org/10.1029/2006WR005128
Silburn D.M., Freebairn D.M. (1992): Evaluations of the CREAMS model. III. Simulation of the hydrology of vertisols. Australian Journal of Soil Research, 30: 547–564..
https://doi.org/10.1071/SR9920547
Tarboton D.G. (1997): A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33: 309–319.
https://doi.org/10.1029/96WR03137
Tarboton D.G., Bras R.L., Rodriguez-Iturbe I. (1991): On the extraction of channel networks from digital elevation data. Hydrological Processes, 5: 81–100.
https://doi.org/10.1002/hyp.3360050107
Trojáček P., Kadlubiec R. (2004): Detailed mapping of agricultural plots using satellite images and aerial orthphoto maps. In: Goossens R. (ed.): Remote Sensing in Transition. Rotterdam, Millpress: 253–257.
USDA (2008): Draft Science Documentation: Revised Universal Soil Loss Equation Version 2 (RUSLE2) Washington, D.C., USDA – Agricultural Research Service. Available at: http://www.ars.usda.gov/Research/docs.htm?docid=6028
Van Oost K., Govers G. (2000): Usle2D: Online Manual. Leuven, Katholieke Universiteit Leuven. Available at: http://www. geo.kuleuven.be/geography/modelling/erosion/usle2d/
Van Remortel R., Hamilton M., Hickey R. (2001): Estimating the LS Factor for RUSLE the slope length processing of DEM elevation data. Cartography, 30: 27–35.
https://doi.org/10.1080/00690805.2001.9714133
Van Remortel R.D., Maichle R.V., Hickey R. (2004): Computing the LS Factor for the revised universal soil loss equation through array-based slope processing of digital elevation data using a C++ executable. Computers and Geosciences, 30: 1043–1053.
https://doi.org/10.1016/j.cageo.2004.08.001
Van Rompaey A.J.J., Verstraeten G., Van Oost K., Govers G., Poesen J. (2001): Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms, 26: 1221–1236.
https://doi.org/10.1002/esp.275
Williams J.R., Berndt H.D. (1977): Sediment yield prediction based on watershed hydrology. Transactions of the ASAE, 20: 1100–1104.
https://doi.org/10.13031/2013.35710
Williams J.R., Renard K.G., Dyke P.T. (1983): Epic: A new method for assessing erosion's effect on soil productivity. Journal of Soil and Water Conservation, 38: 381–383.
Wischmeier W.H., Smith D.D. (1965): Predicting Rainfall – Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation. Washington, D.C., USDA, Agricultural Research Service.
Wischmeier W.H., Smith D.D. (1978): Predicting Rainfall Erosion Losses: a Guide to Conservation Planning. Washington, D.C., Science and Education Administration, USDA.
Wolock D., Mccabe G. (1995): Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL. Water Resources Research, 31: 1315–1324.
https://doi.org/10.1029/95WR00471
Young R.A., Onstad C.A., Bosch D.D., Anderson W.P. (1989): AGNPS – A nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation, 44: 168–173.
Zhang H., Yang Q., Li R., Liu Q., Moore D., He P., Ritsema C.J., Geissen V. (2013): Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers and Geosciences, 52: 177–188.
https://doi.org/10.1016/j.cageo.2012.09.027
Zhang H., Weia J., Yangb Q., Baartmanc J.E.M., Gaia L., Yang X., Lia S.Q., Yua J., Ritsemac C.J., Geissenc V. (2017): An improved method for calculating slope length (λ) and the LS parameters of the revised universal soil loss equation for large watersheds. Geoderma, 308: 36–45.
https://doi.org/10.1016/j.geoderma.2017.08.006