Antioxidant response by alfalfa (Medicago sativa L.) to Pb pollution – A study to value the feasibility of soil phytoremediation

Liu C.F., Wang Y., Zhang X.Y., Zhang G.L., Liu X.G., Gao P.Y., Yao S.H. (2022): Antioxidant response by alfalfa (Medicago sativa L.) to Pb pollution – A study to value the feasibility of soil phytoremediation. Soil & Water Res., 17: 191–199.

download PDF

With the surrounding environment of Inner Mongolia lead (Pb) ore as the research background, the germination and physio-biochemical effects of Pb stress on alfalfa were discussed to employ this species for the remediation of Pb contaminated soil. Research has shown that a low Pb stress concentration could improve the biological resistance of alfalfa seeds, while a high Pb stress concentration cannot be tolerated. Interestingly, when the Pb concentration was 5 mg/L, the germination rate of the seed was promoted, and the chlorophyll content was especially increased. As the Pb content and stress increased, the amount of malondialdehyde (MDA), H2O2, catalase (CAT) increased; while the root cell viability, chlorophyll and soluble protein content decreased. In consequence, alfalfa was tolerant to Pb stress of 5 mg/L, inversely, its growth was inhibited at levels higher than 5 mg/L, and it was poisoned at 500 mg/L. Based on the principal component analysis (PCA), the H2O2, O2–, chlorophyll total, chlorophyll a, CAT and proline content explicitly reflected the change in the physiology on the alfalfa and its tolerance under Pb stress.

Ahmad P., Hashem A., Abd-Allah E.F., Alqarawi A.A., John R., Egamberdieva D., Gucel S. (2015): Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontier in Plant Science, 6: 868.
Ashraf U., Mahmood M.H., Hussain S., Abbas F., Anjum S.A., Tang X. (2020): Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. Chemosphere, 248: 126003.
Baker C.J., Mock N.M. (1994): An improved method for monitoring cell death in cell suspension and leaf disc assays using evens blue. Plant Cell, Tissue and Organ Culture, 39: 7–12.
Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205–207.
Baxter A., Mittler R., Suzuki N. (2014): ROS as key players in plant stress signalling. Journal of Experimental Botany, 65: 1229–1240.
Benavides M.P., Gallego S.M., Tomaro M.L. (2005): Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17: 21–34.
Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254.
Cai X.Y., Liao J.R., Yang Y.X., Li N.F., Xu M., Jiang M.Y., Chen Q.B., Li X., Liu S. L., Luo Z.H., Sun L.X. (2021): Physiological resistance of Sasa argenteostriata (Regel) E.G. Camus in response to high‑concentration soil Pb stress. Acta Physiologiae Plantarum, 43: 21.
Cao M., Jun G., Gao Y., Guo L. (2019): Effects of heavy metal stress on resistance physiological indices of Pisum sativum L. Jiangsu Agricultural Sciences, 47: 161–165.
Dias M.C., Mariz-Ponte N., Santos C. (2019): Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiology and Biochemistry, 137: 121–129.
Ding G., Ma D., Yang G., Zhang F., Bai L. (2016): Responses of the photosynthetic system of drought-tolerance weedy rice to drought stress at the seedling stage. Acta Ecologica Sinica, 36: 226–234.
Dionisiosese M.L., Tobita S. (1998): Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135: 1–9.
Gill S.S., Tuteja N. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909–930.
Gouia H., Ghorbal M.H., Meyer C. (2000): Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology and Biochemistry, 38: 629–638.
Jamal A., Delavar M.A., Naderi A., Nourieh N., Medi B., Mahvi A.H. (2018): Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran. Human and Ecological Risk Assessment: An International Journal, 25: 1018–1033.
Kasemodel M.C., Sakamoto I.K., Varesche M.B.A., Rodrigues V.G.S. (2019): Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Science of the Total Environment, 675: 367–379.
Kolahi M., Mohajel Kazemi E., Yazdi M., Goldson-Barnaby A. (2020): Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiology and Biochemistry, 146: 71–89.
Li X., Yan W., Ma X., Ma J., Yu J. (2019): China Mineral Resources. Beijing, Ministry of Natural Resources, Geological Publishing House Beijing.
Liu D., Li T., Jin X., Yang X. (2008): Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. Journal of Integrative Plant Biology, 50: 129–140.
Liu R.Y. (2010): The medicinal value of Medicago. Food and Nutrition in China, 130: 76–78.
Ohkawa H., Ohishi N., Yagi K. (1979): Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95: 351–358.
Rao M.V., Paliyath G., Ormrod D.P. (1996): Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology, 110: 125–136.
Wang P., Zhang S., Wang C., Lu J. (2012): Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotoxicology and Environmental Safety, 78: 28–34.
Yang J., Lv F., Song Y., Zhang J., Blomberg J. (2017): Vegetable heavy metal content and health risks in the typical heavy metal contaminated area. Environmental Pollution & Control, 39: 952–956.
Yin L., Mano J., Wang S., Tsuji W., Tanaka K. (2010): The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiology and Biochemistry, 152: 1406–1417.
Zaier H., Ghnaya T., Lakhdar A., Baioui R., Ghabriche R., Mnasri M., Sghair S., Lutts S., Abdelly C. (2010): Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: Tolerance and accumulation. Journal of Hazardous Materials, 183: 609–615.
Zhang C.Y., He Q, Wang M.H., Gao X.Z., Chen J.J., Shen C.W. (2020a): Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis). Ecotoxicology and Environmental Safety, 190: 110090.
Zhang H., Li X., Xu Z., Wang Y. (2020b): Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicology and Environmental Safety, 195: 110469.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti