Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing

https://doi.org/10.17221/147/2015-SWRCitation:Brant V., Kroulík M., Pivec J., Zábranský P., Hakl J., Holec J., Kvíz Z., Procházka l. (2017): Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing. Soil & Water Res., 12: 106-116.
download PDF
Soil under maize cropping is among the most endangered by erosion. The effect of conservation tillage management on values of splash erosion when using shallow strip tillage before sowing maize was evaluated in the Central Bohemian region (Czech Republic) during the period 2010–2012. The following types of tillage management using conventional technology and shallow tillage were evaluated: ploughed plots with mulch formed by weed biomass (PLW), ploughed plots with mulch from perennial ryegrass plants (PLPR), ploughed plots without mulch (PL) and shallow tillage (ST) where the mulch was formed by cereals straw. Furthermore, values of the splash erosion, plants and plant residues coverage ratio of soil by image analysis and the stability of soil aggregates were monitored during the whole experiment. The average value of splash erosion (MSR) was higher by 18.7% in the variant of PLW, lower by 35.9% in PLPR, and lower by 39.5% in ST, than in the control treatment PL (MSR value for PL = 100%) for the whole evaluated period (2010–2012). The average values of the soil surface plant coverage ratio in the plots with mulch ranged from 1.5 to 43.0% at the beginning of the vegetation period, and from 4.9 to 85.5% in the second half of the vegetation period. A positive correlation was observed between the average values of the stability of soil aggregates and the plant coverage ratio of the soil surface in 2010 and 2011.
References:
Blanco-Canqui Humberto, Lal R. (2007): Soil and crop response to harvesting corn residues for biofuel production. Geoderma, 141, 355-362 https://doi.org/10.1016/j.geoderma.2007.06.012
 
Bohren C. (2000): Maissaat mit reduzierter Bodenbearbeitung in verschiedenen Zwischenkulturen. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 17: 319–326.
 
Bollinne A. (1975): La mesure de l’intensité du splash sur sol limoneux. Mise au point d’une technique de terrain et premiers résultats. Pédologie, 25: 199–210.
 
Bui Elisabeth N., Box James E. (1992): Stemflow, Rain Throughfall, and Erosion under Canopies of Corn and Sorghum. Soil Science Society of America Journal, 56, 242- https://doi.org/10.2136/sssaj1992.03615995005600010037x
 
Choudhary M.A., Lal R., Dick W.A. (1997): Long-term tillage effects on runoff and soil erosion under simulated rainfall for a central Ohio soil. Soil and Tillage Research, 42, 175-184 https://doi.org/10.1016/S0167-1987(97)00005-6
 
Devine M.D., Bandeen J.D., McKersie B.D. (1983): Temperature effects on glyphosate absorption, translocation, and distribution in quackgrass (Agropyron repens). Weed Science, 31: 461–464.
 
Di Blasi C., Tanzi V., Lanzetta M. (1997): A study on the production of agricultural residues in Italy. Biomass and Bioenergy, 12, 321-331 https://doi.org/10.1016/S0961-9534(96)00073-6
 
Elbert C. Dickey , David P. Shelton , Paul J. Jasa , Thomas R. Peterson (1984): Tillage, Residue and Erosion on Moderately Sloping Soils. Transactions of the ASAE, 27, 1093-1099 https://doi.org/10.13031/2013.32927
 
Elbert C. Dickey , David P. Shelton , Paul J. Jasa , Thomas R. Peterson (1985): Soil Erosion from Tillage Systems Used in Soybean and Corn Residues. Transactions of the ASAE, 28, 1124-1130 https://doi.org/10.13031/2013.32399
 
Edwards Linnell M., Volk Anja, Burney Jack R. (2000): Mulching potatoes: Aspects of mulch management systems and soil erosion. American Journal of Potato Research, 77, 225-232 https://doi.org/10.1007/BF02855790
 
Elliot L.F., Stott D.E., Douglas C.L., Papendick R.I., Campbell G.S., Collins H. (1999): Residue management issues for conservation tillage systems. In: Michalson E.L., Papendick R.I., Carlson J.E. (eds): Conservation Farming in the United States: The Methods and Accomplishments of the STEEP Program. Boca Raton, CRC Press.
 
Estler M.C., Knittel H. (1996): Praktische Bodenbearbeitung. Grundlagen, Gerätetechnik, Verfahren, Bewertung. München, DLG-Verlag.
 
Feil B., Liedgens M. (2001): Pflanzenproduktion in lebenden Mulchen – eine Übersicht. Pflanzenbauwissenschaften, 5: 15–23.
 
Guy Stephen O., Cox Duncan B. (2002): Reduced tillage increases residue groundcover in subsequent dry pea and winter wheat crops in the Palouse region of Idaho. Soil and Tillage Research, 66, 69-77 https://doi.org/10.1016/S0167-1987(02)00014-4
 
Hudson N. (1995): Soil Conservation. Ames, Iowa State University Press.
 
IUSS Working Group WRB (2014): World reference base for soil resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps World Soil Resources Reports no. 106. FAO, Rome.
 
M. J. Khan , E. J. Monke , G. R. Foster (1988): Mulch Cover and Canopy Effect on Soil Loss. Transactions of the ASAE, 31, 0706-0711 https://doi.org/10.13031/2013.30771
 
P. I. A. Kinnell (1991): The Effect Of Flow Depth On Sediment Transport Induced By Raindrops Impacting Shallow Flows. Transactions of the ASAE, 34, 0161- https://doi.org/10.13031/2013.31639
 
Kukal S.S., Sarkar M. (2011): Laboratory simulation studies on splash erosion and crusting in relation to surface roughness and raindrop size. Journal of the Indian Society of Soil Science, 59: 87–93.
 
Lal R., Pimentel D. (2007): Biofuels from crop residues. Soil and Tillage Research, 93, 237-238 https://doi.org/10.1016/j.still.2006.11.007
 
Leguédois Sophie, Planchon Olivier, Legout Cédric, Le Bissonnais Yves (2005): Splash Projection Distance for Aggregated Soils. Soil Science Society of America Journal, 69, 30- https://doi.org/10.2136/sssaj2005.0030
 
Ma Ren-Ming, Li Zhao-Xia, Cai Chong-Fa, Wang Jun-Guang (2014): The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China). CATENA, 121, 279-287 https://doi.org/10.1016/j.catena.2014.05.028
 
McWhorter C.G., Jordan T.N., Wills G.D. (1980): Translocation of 14C-glyphosate in Soybeans (Glycine max) and Johnsongrass (Sorgbum balepense). Weed Science, 28: 113–118.
 
Morgan R.P.C. (2005): Soil Erosion and Conservation. 3rd Ed.
 
Oxford, Blackwell Publishing.
 
Morvan Thierry, Nicolardot Bernard (2009): Role of organic fractions on C decomposition and N mineralization of animal wastes in soil. Biology and Fertility of Soils, 45, 477-486 https://doi.org/10.1007/s00374-009-0355-1
 
Paltineanu I.C., Starr J.L. (2000): Preferential Water Flow Through Corn Canopy and Soil Water Dynamics Across Rows. Soil Science Society of America Journal, 64, 44- https://doi.org/10.2136/sssaj2000.64144x
 
Pimentel David (2006): Soil Erosion: A Food and Environmental Threat. Environment, Development and Sustainability, 8, 119-137 https://doi.org/10.1007/s10668-005-1262-8
 
Poesen J., Torri D. (1988): The effect of cup size on splash detachment and transport measurements: Part I. Field measurements. Catena Supplement, 12: 113–126.
 
Prasuhn Volker (2012): On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil and Tillage Research, 120, 137-146 https://doi.org/10.1016/j.still.2012.01.002
 
Probert M.E., Delve R.J., Kimani S.K., Dimes J.P. (2005): Modelling nitrogen mineralization from manures: representing quality aspects by varying C:N ratio of sub-pools. Soil Biology and Biochemistry, 37, 279-287 https://doi.org/10.1016/j.soilbio.2004.07.040
 
QUANSAH C. (1981): THE EFFECT OF SOIL TYPE, SLOPE, RAIN INTENSITY AND THEIR INTERACTIONS ON SPLASH DETACHMENT AND TRANSPORT. Journal of Soil Science, 32, 215-224 https://doi.org/10.1111/j.1365-2389.1981.tb01701.x
 
Randall G.W., Lueschen W.E., Evans S.D., Moncrief J.F. (1996): Tillage Best Management Practices for Corn–soybean Rotations in the Minnesota River Basin. St. Paul, University of Minnesota.
 
Sadeghi L.G.S.H., Homaee H. (2012): Straw mulching effect on splash erosion, runoff, and sediment yield from eroded plots. Soil Science Society of America Journal, 77: 268–278.
 
Sharma P.P., Gupta S.C., Rawls W.J. (1991): Soil Detachment by Single Raindrops of Varying Kinetic Energy. Soil Science Society of America Journal, 55, 301- https://doi.org/10.2136/sssaj1991.03615995005500020001x
 
Shelton D.P., Dickey E.C., Hachman S.D., Steven D., Fairbanks K.T. (1995): Corn residue cover on soil surface after planting for various tillage and planting systems. Journal of Soil and Water Conservation, 50: 399–404.
 
Soil Survey Staff (2014): Keys to Soil Taxonomy. 12th Ed. Washington D.C., USDA National Resources Conservation Services.
 
ter Braak C.J.F., Šmilauer P. (2002): CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Ithaca, Microcomputer Power.
 
van Dijk A. I. J. M., Meesters A. G. C. A., Bruijnzeel L. A. (2002): Exponential Distribution Theory and the Interpretation of Splash Detachment and Transport Experiments. Soil Science Society of America Journal, 66, 1466- https://doi.org/10.2136/sssaj2002.1466
 
VAN DIJK P. M., VAN DER ZIJP M., KWAAD F. J. P. M. (1996): SOIL ERODIBILITY PARAMETERS UNDER VARIOUS CROPPING SYSTEMS OF MAIZE. Hydrological Processes, 10, 1061-1067 https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1061::AID-HYP411>3.0.CO;2-V
 
Vetsch Jeffrey A., Randall Gyles W., Lamb John A. (2007): Corn and Soybean Production as Affected by Tillage Systems. Agronomy Journal, 99, 952- https://doi.org/10.2134/agronj2006.0149
 
Wainwright John (1996): Infiltration, runoff and erosion characteristics of agricultural land in extreme storm events, SE France. CATENA, 26, 27-47 https://doi.org/10.1016/0341-8162(95)00033-X
 
download PDF

© 2019 Czech Academy of Agricultural Sciences