Construction and calibration of a portable rain simulator designed for the in situ research of soil resistance to erosion

https://doi.org/10.17221/148/2021-SWRCitation:

Živanović N., Rončević V., Spasić M., Ćorluka S., Polovina S. (2022): Construction and calibration of a portable rain simulator designed for the in situ research of soil resistance to erosion. Soil & Water Res., 17: 158–169.

download PDF

Land degradation caused by erosion processes is a widespread global problem. Rain simulators are one of the tools often used to determine the resistance of soils to erosion processes. The aim of this publication is to present the process of the construction and calibration of a small, portable field simulator which would be implemented in research studies designed to determine the changes in the soils’ shear strength parameters in forested areas (in situ) caused by a change in soil moisture content achieved by the rain simulation. The constructed simulator consists of a metal frame, sprayers (with specific nozzles), a sediment funnel/tray made of metal, water and a sediment collector unit, a water tank and pump, and a set of rubber hoses, manometer, valves, reducers, adapters and other supplementary equipment. The calibration was carried out by using the pluviometric method. The choice of nozzles was based on the criteria of low water consumption (losses), the Christiansen uniformity coefficient (CU) and the possibility of achieving specific downpour intensities for the investigated area. The further calibration of the device consisted of determining the raindrop diameter and the distribution of the rainfall when the simulator is positioned on the slopes (7° and 15°). The achieved rain intensity was 1.7–1.9 mm/min, with a CU of 92.23–93.70% for the raindrop diameters (D50) equal to 1.2 mm. The kinetic energy of the simulated rain (Ke) was 2.82∙10–6 J. The constructed simulator proved itself to be in accordance with all of the given criteria, and it can successfully be implemented in research studies aimed at determining the resistance of forest soils to erosion processes, infiltration, and sediment yield.

References:
Abudi I., Carmi G., Berliner P. (2012): Rainfall simulator for field runoff studies. Journal of Hydrology, 454–455: 76–81.  https://doi.org/10.1016/j.jhydrol.2012.05.056
 
Aerts R., Maes W., November E., Behailu M., Poesen J., Deckers J., Hermy M., Muys B. (2006): Surface runoff and seed trapping efficiency of shrubs in a regenerating semiarid woodland in northern Ethiopia. Catena, 65: 61–70.  https://doi.org/10.1016/j.catena.2005.09.004
 
Agassi M., Bradford J.M. (1999): Methodologies for interrill soil erosion studies. Soil and Tillage Research, 49: 277–287. https://doi.org/10.1016/S0167-1987(98)00182-2
 
Blinkov I. (2015): Review and comparison of water erosion intensity in the Western Balkan and EU countries. Contributions, Section of Natural, Mathematical and Biotechnical Sciences, MASA, 36: 27–42.
 
Boix-Fayos C., Martínez-Mena M., Arnau-Rosalén E., Calvo-Cases A., Castillo V., Albaladejo J. (2006): Measuring soil erosion by field plots: Understanding the sources of variation. Earth-Science Reviews, 78: 267–285.  https://doi.org/10.1016/j.earscirev.2006.05.005
 
Borrelli P., Panagos P., Märker M., Modugno S., Schütt B. (2017): Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena, 149: 770–781. https://doi.org/10.1016/j.catena.2016.02.017
 
Borrelli P., Robinson D.A., Panagos P., Lugato E., Yang J.E., Alewell C., Wuepper D., Montanarella L., Ballabio C. (2020): Land use and climate change impacts on global soil erosion by water (2015–2070). Proceedings of the National Academy of Sciences of the USA, 117: 21994–22001. https://doi.org/10.1073/pnas.2001403117
 
Boulange J., Malhat F., Jaikaew P., Nanko K., Watanabe H. (2019): Portable rainfall simulator for plot-scale investigation of rainfall-runoff, and transport of sediment and pollutants. International Journal of Sediment Research, 34: 38–47. https://doi.org/10.1016/j.ijsrc.2018.08.003
 
Boxel Van J.H. (1997): Numerical model for the fall speed of raindrops in a rainfall simulator. Proceedings of the Workshop on Wind and Water Erosion, 5: 77–85.
 
Bryan R.B. (1974): Water erosion by splash and wash and the erodibility of Albertan soils. Geografiska Annaler: Series A, Physical Geography, 56: 159–181.  https://doi.org/10.1080/04353676.1974.11879897
 
Cao L., Liang Y., Wang Y., Lu H. (2015): Runoff and soil loss from Pinus massoniana forest in Southern China after simulated rainfall. Catena, 129: 1–8.  https://doi.org/10.1016/j.catena.2015.02.009
 
Cerdà A. (1999): Rain simulators and their application in geomorphology: State of the art. Cuadernos de Investigación Geográfica/Geographical Research Letters, 25: 45–84. (in Spanish)
 
Cerdà A., Ibáñez S., Calvo A. (1997): Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technology, 11: 163–170.  https://doi.org/10.1016/S0933-3630(96)00135-3
 
Christiansen J.E. (1942): Irrigation by sprinkling. University of California Agricultural Experiment Station Bulletin, 670: 124.
 
Clarke M.A., Walsh R.P.D. (2007): A portable rainfall simulator for field assessment of splash and slopewash in remote locations. Earth Surface Processes and Landforms, 32: 2052–2069.  https://doi.org/10.1002/esp.1526
 
Corona R., Wilson T., D’Adderio L.P., Porcù F., Montaldo N., Albertson J. (2013): On the estimation of surface runoff through a new plot scale rainfall simulator in Sardinia, Italy. Procedia Environmental Sciences, 19: 875–884.  https://doi.org/10.1016/j.proenv.2013.06.097
 
Dong J., Zhang K., Guo Z. (2012): Runoff and soil erosion from highway construction spoil deposits: A rainfall simulation study. Transportation Research, Part D1: 8–14.  https://doi.org/10.1016/j.trd.2011.09.007
 
Dunkerley D. (2008): Rain event properties in nature and in rainfall simulation experiments: A comparative review with recommendations for increasingly systematic study and reporting. Hydrological Processes, 22: 4415–4435.  https://doi.org/10.1002/hyp.7045
 
FAO (2011): Assessing Forest Degradation: Towards the Development of Globally Applicable Guidlines Forest Resources Assessment. Forest Resources Assessment Working Paper 177. Rome, FAO.
 
Gabrić O. (2014): Experimental Research of Catchment Processes: Rainfall, Runoff and Soil Erosion. [Ph.D. Thesis.] Subotica, University of Novi Sad, Faculty of Civil Engineering.
 
Gavrilović S. (1972): Engineering of Torrents and Erosion. Journal of Construction (Special Issue). (in Serbian)
 
Guerra A.J.T., Fullen M.A., do Carmo M.O.J., Bezerra J.F.R., Shokr M.S. (2017): Slope processes, mass movement and soil erosion: A review. Pedosphere, 27: 27–41.  https://doi.org/10.1016/S1002-0160(17)60294-7
 
Guo W., Xu X., Zhu T., Zhang H., Wang W., Liu Y., Zhu M. (2020): Changes in particle size distribution of suspended sediment affected by gravity erosion: A field study on steep loess slopes. Journal of Soils and Sediments, 20: 1730–1741.  https://doi.org/10.1007/s11368-019-02496-z
 
Holden J., Burt T.P. (2002): Infiltration, runoff and sediment production in blanket peat catchments: Implications of field rainfall simulation experiments. Hydrological Processes, 16: 2537–2557.  https://doi.org/10.1002/hyp.1014
 
Hudson N. (1993): Field Measurement of Soil Erosion and Runoff. FAO Soils Bulletin No. 68, Rome, FAO.
 
Iserloh T., Fister W., Seeger M., Willger H., Ries J.B. (2012): A small portable rainfall simulator for reproducible experiments on soil erosion. Soil and Tillage Research, 124: 131–37.  https://doi.org/10.1016/j.still.2012.05.016
 
Iserloh T., Ries J.B., Arnáez J., Boix-Fayos C., Butzen V., Cerdà A., Echeverría M.T., Fernández-Gálvez J., Fister W., Geißler C., Gómez J.A., Gómez-Macpherson H., Kuhn N.J., Lázaro, R., León F.J., Martínez-Mena M., Martínez-Murillo J.F., Marzen M., Mingorance M.D., Ortigosa L., Peters P., Regüés D., Ruiz-Sinoga J.D., Scholten T., Seeger M., Solé-Benet A., Wengel R., Wirtz S. (2013): European small portable rainfall simulators: A comparison of rainfall characteristics. Catena, 110: 100–112.  https://doi.org/10.1016/j.catena.2013.05.013
 
Jevtić Lj. (1978): Engineering Handbook for Torrent and Erosion Control. Belgrade, University of Belgrade, Faculty of Forestry. (in Serbian)
 
Jevtić Lj (1988): Torrent Hydrology. Belgrade, University of Belgrade, Faculty of Forestry. (in Serbian)
 
Johansen M.P., Hakonson T.E., Breshears D.D. (2001): Post-fire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands. Hydrological Processes, 15: 2953–2965.  https://doi.org/10.1002/hyp.384
 
Kašanin-Grubin M., Hukić E., Bellan M., Bialek K., Bosela M., Coll L., Czacharowski M., Gajica G., Giammarchi F., Gömöryová E., del Rio M., Dinca L., Đogo Mračević S., Klopčić M., Mitrović S., Pach M., Randjelović D., Ruiz-Peinado R., Skrzyszewski J., Orlić J., Štrbac S., Stojadinović S., Tonon G., Tosti T., Uhl E., Veselinović G., Veselinović M., Zlatanov T., Tognetti R. (2021): Soil erodibility in European mountain beech forests. Canadian Journal of Forest Research, 51: 1846–1855.  https://doi.org/10.1139/cjfr-2020-0361
 
Kathiravelu G., Lucke T., Nichols P. (2016): Rain drop measurement techniques: A review. Water, 8: 29.  https://doi.org/10.3390/w8010029
 
Kavian A., Mohammadi M., Cerdà A., Fallah M., Gholami L. (2019): Design, manufacture and calibration of the SARI portable rainfall simulator for field and laboratory experiments. Hydrological Sciences Journal, 64: 350–360.  https://doi.org/10.1080/02626667.2019.1581364
 
Kavian A., Kalehhouei M., Gholami L., Jafarian Z., Mohammadi M., Rodrigo-Comino J. (2020): The use of straw mulches to mitigate soil erosion under different antecedent soil moistures. Water, 12: 2518. https://doi.org/10.3390/w12092518
 
Kolić B. (1988): Forestry Ecoclimatology. Belgrade, Naučna knjiga/Scientific Book. (in Serbian)
 
Konz N., Baenninger D., Konz M., Nearing M., Alewell C. (2010): Process identification of soil erosion in steep mountain regions. Hydrology and Earth System Sciences, 14: 675–686.  https://doi.org/10.5194/hess-14-675-2010
 
Lora M., Camporese M., Salandin P. (2016): Design and performance of a nozzle-type rainfall simulator for landslide triggering experiments. Catena, 140: 77–89.  https://doi.org/10.1016/j.catena.2016.01.018
 
Meshesha D.T., Tsunekawa A., Haregeweyn N. (2019): Influence of raindrop size on rainfall intensity, kinetic energy, and erosivity in a sub-humid tropical area: A case study in the northern highlands of Ethiopia. Theoretical and Applied Climatology, 136: 1221–1231.  https://doi.org/10.1007/s00704-018-2551-0
 
Meyer L.D., Harmon W.C. (1979): Multiple-intensity rainfall simulator for erosion research on row sideslopes. Transactions of the ASAE, 22: 0100–0103.  https://doi.org/10.13031/2013.34973
 
Mhaske S.N., Pathak K., Basak A. (2019): A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena, 172: 408–420.  https://doi.org/10.1016/j.catena.2018.08.039
 
Milosavljević K (1949): Heavy rains and showers in Belgrade. Glasnik Srpskog Geografskog Društva/Bulletin of Serbian Geographical Society, 29: 13–21. (in Serbian)
 
Misra R.K., Rose C.W. (1995): An examination of the relationship between erodibility parameters and soil strength. Soil Research, 33: 715–732.  https://doi.org/10.1071/SR9950715
 
Montanarella L., Pennock D.J., McKenzie N., Badraoui M., Chude V., Baptista I., Mamo T., Yemefack M., Singh A.M., Yagi K., Young H.S., Vijarnsorn P., Zhang G.L., Arrouays D., Black H., Krasilnikov P., Sobocká J., Alegre J., Henriquez C.R., Mendonca Santos L.M., Taboada M., Espinosa-Victoria D., AlShankiti A., AlaviPanah S.K., Elsheikh E.A.E.M., Hempel J., Camps Arbestain M., Nachtergaele F., Vargas R. (2016): World’s soils are under threat. Soil, 2: 79–82.  https://doi.org/10.5194/soil-2-79-2016
 
Morgan R.P.C. (2009): Soil Erosion and Conservation. Hoboken, John Wiley and Sons.
 
Newesely C.G.L., Zimmerhofer W., Kohl B., Markart G., Tasser E., Tappeiner U. (2015): Rain simulation in patchy landscapes: Insights from a case study in the Central Alps. Catena, 127: 1–8.  https://doi.org/10.1016/j.catena.2014.11.013
 
Panagos P., Borrelli P., Poesen J., Ballabio C., Lugato E., Meusburger K., Alewell C. (2015): The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54: 438–447. https://doi.org/10.1016/j.envsci.2015.08.012
 
Parsakhoo A., Lotfalian M., Kavian A., Hoseini S.A., Demir M. (2012): Calibration of a Portable single nozzle rainfall simulator for soil erodibility study in Hyrcanian Forests. African Journal of Agricultural Research, 7: 3957–3963.
 
Poesen J. (2018): Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, 43: 64–84.  https://doi.org/10.1002/esp.4250
 
Polovina S., Radić B., Ristić R., Kovačević J., Milčanović V., Živanović N. (2021): Soil Erosion Assessment and Prediction in Urban Landscapes: A New G2 Model Approach. Applied Sciences, 11: 4154.  https://doi.org/10.3390/app11094154
 
Polyakov V., Stone J., Collins C.H., Nearing M.A., Paige G., Buono J., Gomez-Pond R.L. (2018): Rainfall simulation experiments in the southwestern USA using the walnut gulch rainfall simulator. Earth System Science Data, 10: 19–26.  https://doi.org/10.5194/essd-10-19-2018
 
Qiu Y., Wang X., Xie Z., Wang Y. (2021): Effects of gravel-sand mulch on the runoff, erosion, and nutrient losses in the Loess Plateau of north-western China under simulated rainfall. Soil and Water Research, 16: 22−28.
 
Radić Z. (1981): Modern Methods of Analysis of Water and Sediment Movement in Open Streams. Scientific Research Project. Belgrade, University of Belgrade, Faculty of Civil Engineering, Institute of Hydraulic Engineering. (in Serbian)
 
Radić Z.M., Pavlović D. (2015): Spatial analysis of heavy rains of short duration in Serbia. In: Int. Conf. Achievements in Civil Engineering, Subotica, Apr 24, 2015: 641–649. (in Serbian)
 
Rauch W., De Toffol S. (2006): On the issue of trend and noise in the estimation of extreme rainfall properties. Water Science and Technology, 54: 17–24.  https://doi.org/10.2166/wst.2006.624
 
RHSS (2014): Republic Hydrometeorological Services of Serbia, Extraordinary Climatological Bulletin Precipitation. Available at http://www.hidmet.gov.rs/index_eng.php (accessed Feb 15, 2021). (in Serbian)
 
Ristić R., Malošević D. (2011): Torrent Hydrology. Belgrade, University of Belgrade, Faculty of Forestry. (in Serbian)
 
Sangüesa C., Arumí J., Pizarro R., Link O. (2010): A rainfall simulator for the in situ study of superficial. Chilean Journal of Agricultural Research, 70: 178–182.
 
Singh H.V., Thompson A.M. (2016): Effect of antecedent soil moisture content on soil critical shear stress in agricultural watersheds. Geoderma, 262: 165–173.  https://doi.org/10.1016/j.geoderma.2015.08.011
 
Torri D., Colica A., Rockwell D. (1994): Preliminary study of the erosion mechanisms in a Biancana Badland (Tuscany, Italy). Catena, 23: 281–294.  https://doi.org/10.1016/0341-8162(94)90073-6
 
Vergni L., Todisco F., Vinci A. (2018): Setup and calibration of the rainfall simulator of the masse experimental station for soil erosion studies. Catena, 167: 448–455.  https://doi.org/10.1016/j.catena.2018.05.018
 
Wilson T.G., Cortis C., Montaldo N., Albertson J.D. (2014): Development and testing of a large, transportable rainfall simulator for plot-scale runoff and parameter estimation. Hydrology and Earth System Sciences, 18: 4169–4183. https://doi.org/10.5194/hess-18-4169-2014
 
Yakubu M.L., Yusop Z. (2017): Adaptability of rainfall simulators as a research tool on urban sealed surfaces – a Review. Hydrological Sciences Journal, 62: 996–1012.  https://doi.org/10.1080/02626667.2016.1267355
 
Zemke J.J. (2016): Runoff and soil erosion assessment on forest roads using a small scale rainfall simulator. Hydrology, 3: 25.  https://doi.org/10.3390/hydrology3030025
 
Zemke J.J., Enderling M., Klein A., Skubski M. (2019): The influence of soil compaction on runoff formation. A case study focusing on skid trails at forested Andosol sites. Geosciences, 9: 204.  https://doi.org/10.3390/geosciences9050204
 
Zhang K., Yu Y., Dong J., Yang Q., Xu X. (2019a): Adapting & Testing use of USLE K factor for agricultural soils in China. Agriculture, Ecosystems & Environment, 269: 148–55.
 
Zhang Y., Li X., Zhang X., Li H. (2019b): Investigating rainfall duration effects on transport of chemicals from soil to surface runoff on a loess slope under artificial rainfall conditions. Soil and Water Research, 14: 183–194. https://doi.org/10.17221/98/2018-SWR
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti