Available water capacity and organic carbon storage profiles in soils developed from dark brown soil to boggy soil in Changbai Mountains, China

https://doi.org/10.17221/150/2019-SWRCitation:

Yu D., Hu F., Zhang K., Liu L., Li D. (2021): Available water capacity and organic carbon storage profiles in soils developed from dark brown soil to boggy soil in Changbai Mountains, China. Soil & Water Res., 16: 11−21.

download PDF

The available water capacity (AWC) is the most commonly used parameter for quantifying the amount of soil water that is readily available to plants. Specific AWC and soil organic carbon storage (SOCS) profiles are consequences of the soil development process. Understanding the distributions of AWC and SOCS in soil profiles is crucial for modelling the coupling between carbon and water cycle processes, and for predicting the consequences of global change. In this study, we determined the variations in the AWC and SOCS from the surface to a depth of 100 cm in soils developed from dark brown soil, skeletal dark brown soil, meadow dark brown soil, white starched dark brown soil, meadow soil, and boggy soil in the Changbai Mountains area of China. The AWC and SOCS profiles were calculated for each main soil group/subgroup using only the readily available variables for the soil texture and organic matter with the soil water characteristic equations. The results showed the following. (1) The AWC and SOCS decreased initially and then increased, before decreasing again in soils developed from dark brown soil to boggy soil, where the maximum SOCS occurred in the white starched dark brown soil, and the maximum AWC in the dark brown soil. (2) The SOCS was decreased by deforestation and concomitant soil erosion, but the negative impact of this decrease in the SOCS in the Changbai Mountains area was not caused completely by reductions in AWC. (3) In the soil development process from dark brown soil to boggy soil in response to deforestation, the AWC distribution differed in the profile and even among individual layers, whereas the SOCS was mainly present in the upper layer.

References:
Alliaume F., Rossing W.A.H., García M., Giller K.E., Dogliotti S. (2013): Changes in soil quality and plant available water capacity following systems re-design on commercial vegetable farms. European Journal of Agronomy, 46: 10–19. https://doi.org/10.1016/j.eja.2012.11.005
 
Atherton B.C., Morgan M.T., Shearer S.A., Stombaugh T.S., Ward A.D. (1999): Site-specific farming: A perspective on information needs, benefits and limitations. Journal of Soil and Water Conservation, 54: 455–461.
 
Batjes N.H. (1996): Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma, 71: 31–52. https://doi.org/10.1016/0016-7061(95)00089-5
 
Bayat H., Neyshaburi M.R., Mohammadi K., Nariman-Zadeh N., Irannejad M., Gregory A.S. (2013): Combination of artificial neural networks and fractal theory to predict soil water retention curve. Computers and Electronics in Agriculture, 92: 92–103. https://doi.org/10.1016/j.compag.2013.01.005
 
Charley J.L., West N.E. (1977): Micro-patterns of nitrogen mineralization activity in soils of some shrub-dominated semi-desert ecosystems of Utah. Soil Biology and Biochemistry, 9: 357–365. https://doi.org/10.1016/0038-0717(77)90010-4
 
Claudio C., Gilmo V. (1989): Soil Water Balance: Taxonomic, Climatic and Cartographic Applications. Roma, CLUEB. (in Italy)
 
da Silva A.P., Kay B.D. (1997): Estimating the least limiting water range of soils from properties and management. Soil Science Society of America Journal, 61: 877–883. https://doi.org/10.2136/sssaj1997.03615995006100030023x
 
Davidson E.A., Janssens I.A. (2006): Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440: 165–173. https://doi.org/10.1038/nature04514
 
Dharumarajan S., Singh S.K., Bannerjee T., Sarkar D. (2013): Water-retention characteristics and available water capacity in three cropping systems of lower Indo-Gangetic Alluvial Plain. Communications in Soil Science and Plant Analysis, 44: 2734–2745. https://doi.org/10.1080/00103624.2013.803561
 
Doorenbos J., Kassam A.H. (1979): Yield Response to Water. FAO Irrigation and Drainage Paper No. 33. Rome, FAO.
 
Esayas Y. (2010): Evaluating the impact of land use/land cover change on soil erosion and runoff using SWAT model at Tikur Wuha Watershed. [M.Sc Thesis.] Addis Ababa, Addis Ababa University.
 
Frye W.W., Ebelhar S.A., Murdock L.W., Blevins R.L. (1982): Soil erosion effects on properties and productivity of two Kentucky soils. Soil Science Society of America Journal, 46: 1051–1055. https://doi.org/10.2136/sssaj1982.03615995004600050033x
 
García-González I., Hontoria C., Gabriel J.L., Alonsoayuso M., Quemada M. (2018): Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma, 322: 81–88. https://doi.org/10.1016/j.geoderma.2018.02.024
 
Ghanbarian B., Taslimitehrani V., Dong G.Z., Pachepsky Y.A. (2015): Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity. Journal of Hydrology, 528: 127–137. https://doi.org/10.1016/j.jhydrol.2015.06.024
 
Haghighi F., Gorjiz M., Shorafa M. (2010): A study of the effects of land use changes on soil physical properties and organic matter. Land Degradation & Development, 21: 496–502.
 
Hartemink A.E., McBratney A.B., Cattle J.A. (2001): Developments and trends in soil science: 100 volumes of Geoderma (1967–2001). Geoderma, 100: 217–268. https://doi.org/10.1016/S0016-7061(01)00024-6
 
Hassink J., Whitmore A.P., Kubát J. (1997): Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter. European Journal of Agronomy, 7: 189–199. https://doi.org/10.1016/S1161-0301(97)00045-2
 
Hollis J.M., Jones R.J.A., Palmer R.C. (1977): The effects of organic matter and particle size on the water-retention properties of some soils in the West Midlands of England. Geoderma, 17: 225–238. https://doi.org/10.1016/0016-7061(77)90053-2
 
Hornsby A.G. (1992): Site-specific pesticider ecommendations: the final step in environmental impact prevention. Weed Technology, 6: 736–742. https://doi.org/10.1017/S0890037X00036137
 
Hudson B. (1994): Soil organic matter and available water capacity. Journal of Soil and Water Conservation, 49: 189–194.
 
Islam K.R., Weil R.R. (2000): Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems & Environment, 79: 9–16.
 
Jiang P.P., Anderson S.H., Kitchen N.R., Sudduth K.A., Sadler E.J. (2007): Estimating plant-available water capacity for claypan landscapes using apparent electrical conductivity. Soil Science Society of America Journal, 71: 1902. https://doi.org/10.2136/sssaj2007.0011
 
Jones A., Stolbovoy V., Rusco E., Gentile A.R., Gardi C., Marechal B., Montanarella L. (2009): Climate change in Europe. 2. Impact on soil. A review. Agronomy for Sustainable Development, 29: 423–432. https://doi.org/10.1051/agro:2008067
 
Lepers E.A., Lambin E.F., Janetos A.C., Defries R. (2005): A synthesis of information on rapid land-cover change for the period 1981–2000. BioScience, 55: 115–124.  https://doi.org/10.1641/0006-3568(2005)055[0115:ASOIOR]2.0.CO;2
 
Li D.F., Gao G.Y., Shao M.A., Fu B.J. (2016): Predicting available water of soil from particle-size distribution and bulk density in an oasis–desert transect in northwestern China. Journal of Hydrology, 538: 539–550. https://doi.org/10.1016/j.jhydrol.2016.04.046
 
Minasny B., McBratney A.B. (2003): Integral energy as a measure of soil-water availability. Plant and Soil, 249: 253–262. https://doi.org/10.1023/A:1022825732324
 
Minasny B., McBratney A.B. (2017): Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 69: 39–47. https://doi.org/10.1111/ejss.12475
 
Morris G.D. (2004): Sustaining national water supplies by understanding the dynamic capacity that humus has to increase soil water-holding capacity. [M.Sc Thesis.] Sydney, University of Sydney.
 
Mualem Y. (1976): A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12: 513–522. https://doi.org/10.1029/WR012i003p00513
 
Nemes A., Rawls W.J., Pachepsky Y.A. (2006): Use of k-nearest neighbor algorithms to estimate soil hydraulic properties. Soil Science Society of America Journal. 70: 327–336. https://doi.org/10.2136/sssaj2005.0128
 
O’Geen A.T. (2013): Soil water dynamics. Nature Education Knowledge, 4: 9.
 
Oldeman R., Hakkeling R.T.A., Sombroek W. (1991): World Map on the Status of Human-Induced Soil Degradation. An Explanatory Note. Global Assessment of Soil Degradation. GLASOD. Wageningen, Nairobi, ISRIC, UNEP.
 
Olness A., Archer D. (2005): Effect of organic carbon on available water in soil. Soil Science, 170: 90–101. https://doi.org/10.1097/00010694-200502000-00002
 
Pachepsky Y., Rawls W.J. (eds.) (2004): Development of Pedotransfer Functions in Soil Hydrology. Development in Soil Science, Vol. 30, Amsterdam, Elsevier.
 
Pachepsky Y.A., Rajkai K., Tóth B. (2015): Pedotransfer in soil physics: trends and outlook – a review. Agrokémia és Talajtan, 64: 339–360. https://doi.org/10.1556/0088.2015.64.2.3
 
Petersen G.W., Cunningham R.L., Matelski R.P. (1968): Moisture characteristics of Pennsylvania soils. I. Moisture retention as related to texture. Proceedings of the Soil Science Society of America, 32: 271–275.  https://doi.org/10.2136/sssaj1968.03615995003200020031x
 
Pimentel D., Harvey C., Resosudarmo P., Sinclair K., Kunz D., McNair M., Crist S., Shpritz L., Fitton L., Saffouri R., Blair R. (1995): Environmental and economic costs of soil erosion and conservation benefits. Science, 267: 1117–1123. https://doi.org/10.1126/science.267.5201.1117
 
Qing L., Shaohui X.U. (2018). Parameter identification and uncertainty analysis of soil water movement model in field layered soils based on Bayes Theory. Journal of Hydraulic Engineering, 49: 428–438.
 
Rawls W.J., Brakensiek D.L., Saxton K.E. (1982): Estimation of soil water properties. Transactions of the ASAE, 25: 1316–1320. https://doi.org/10.13031/2013.33720
 
Rawls W.J., Pachepsky Y.A., Ritchie J.C., Sobecki T.M., Bloodworth H. (2003): Effect of organic carbon on soil water retention. Geoderma, 116: 61–76. https://doi.org/10.1016/S0016-7061(03)00094-6
 
Research Institute of Forestry (1986): Chinese Forest Soil. Beijing, Science Press, Chinese Academy of Forestry: 179–243.
 
Rodolfo L.B., Nóbrega Guzha A.C., Torres G.N., Kovacs K., Gerold G. (2017): Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE, 12: e0179414.
 
Rivers E.D., Shipp R.F. (1972): Available water capacity of sandy and gravelly North Dakota soils. Soil Science, 113: 74–80. https://doi.org/10.1097/00010694-197202000-00001
 
Salter P.J., Williams J.B. (1967): The influence of texture on the moisture characteristics of soils: IV. A method of estimating available water capacities of profiles in the field. European Journal of Soil Science, 18: 174–181. https://doi.org/10.1111/j.1365-2389.1967.tb01498.x
 
Schaap M.G., Leij F.J., van Genuchten M.Th. (2001): Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251: 163–176.  https://doi.org/10.1016/S0022-1694(01)00466-8
 
Schlesinger W.H., Adrienne M.P. (1998): Plant–soil interaction in deserts. Biogeochemistry, 42: 169–87. https://doi.org/10.1023/A:1005939924434
 
Sims J.T., Simard R.R., Joern B.C. (1998): Phosphorus loss in agricultural drainage: historical perspective and current research. Journal of Environment Quality, 27: 277–293.  https://doi.org/10.2134/jeq1998.00472425002700020006x
 
Testi A., Ponziani S., Spada F., Pignatti S. (2005): Available soil water capacity as a discriminant factor in mixed oak forests of Central Italy. Annali di Botanica Nuova Serie, 4: 49–64.
 
Timlin D.J., Pachepsky Y., Snyder V.A., Bryant R.B. (2001): Water budget approach to quantify corn grain yields under variable rooting depths. Soil Science Society of America Journal, 65: 1219–1226. https://doi.org/10.2136/sssaj2001.6541219x
 
Trnka M., Semeradova D., Novotný I., Dumbrovský M., Drbal K., Pavlik F., Vopravil J., Pankova P.T., Vizina A., Balek J., Hlavinka P., Bartoova L., Alud Z.K. (2016): Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: a Czech case study. Climate Research, 70: 231–249. https://doi.org/10.3354/cr01421
 
van Genuchten M.Th. (1980): A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
 
Veihmeyer F.J. (1927): The relation of soil moisture to cultivation and plant growth. Plant Physiology, 2: 71–82. https://doi.org/10.1104/pp.2.1.71
 
Vereecken H., Maes J., Feyen J., Darius P. (1989): Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science, 148: 389–403. https://doi.org/10.1097/00010694-198912000-00001
 
Wall A., Heiskanen J. (2003): Water-retention characteristics and related physical properties of soil on afforested agricultural land in Finland. Forest Ecology and Management, 186: 21–32. https://doi.org/10.1016/S0378-1127(03)00239-1
 
Wang J.P., Hu N., Francois B., Lambert P. (2017): Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters. Water Resources Research, 53: 6069–6088.  https://doi.org/10.1002/2017WR020411
 
Xia J., Zhao Z., Fang Y. (2017): Soil hydro-physical characteristics and water retention function of typical shrubbery stands in the Yellow River Delta of China. Catena, 156: 315–324. https://doi.org/10.1016/j.catena.2017.04.022
 
Yang D.W., Kanae S., Oki T., Koike T., Musiake K. (2003): Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17: 2913–2928. https://doi.org/10.1002/hyp.1441
 
Zemánek P. (2011): Evaluation of compost influence on soil water retention. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59: 227–232. https://doi.org/10.11118/actaun201159030227
 
Zhou W.Z., Liu G.H., Pan J.J., Feng X.F. (2005): Distribution of available soil water capacity in China. Journal of Geographical Sciences, 15: 3–12. https://doi.org/10.1007/BF02873101
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti