Causes clarification of the soil aggregates stability on mulched soil

Thai S., Davídek T., Pavlů L. (2022): Causes clarification of the soil aggregates stability on mulched soil. Soil & Water Res., 17: 91−99.

download PDF

Soil aggregates have great effects on soil properties and soil functions. Mulching (organic inputs) has been known as a factor influencing soil aggregate stability. Our study aimed to reveal the causes of the higher stability of soil aggregates under organic mulches. The primary soil characteristics such as organic carbon (Cox), humus quality (E4/E6), potential wettability index (PWI), and aromaticity index (iAR) were determined. The Cox was measured using rapid dichromate oxidation, and E4/E6 was measured using the UV-Vis spectrophotometry. The PWI and iAR were determined according to the intensity of selected bands in diffuse reflectance infrared spectra. Results showed that mulched plots contained higher Cox content in aggregates in comparison with whole soil. This indicates that the carbon was stabilized within the aggregates and sequestrated into the soil. The iAR was significantly higher after using the organic mulches, the aliphatic components of the organic matter thus contribute more to the aggregates stabilization. The PWI of aggregates was found to  be  higher after applying these mulches than in soil. Organic mulches are therefore able to reduce the wettability of the aggregates and also to protect the aggregate from dispersion with water.

Abdul Khalil H.P.S., Yusra A.F.I., Bhat A.H., Jawaid M. (2010): Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products, 31: 113–121.
Adekiya A.O., Agbede T.M., Aboyeji C.M., Dunsin O. (2017): Response of okra (Abelmoschus esculentus (L.) Moench) and soil properties to different mulch materials in different cropping seasons. Scientia Horticulturae, 217: 209–216.
Alharbi A. (2015): Effect of mulch on soil properties under organic farming conditions in center of Saudi Arabia. Journal of American Science, 11: 108–115.
Amare G., Desta B. (2021): Coloured plastic mulches: Impact on soil properties and crop productivity. Chemical and Biological Technologies in Agriculture, 8: 1–9.
Bajoriene K., Jodaugiene D., Pupaliene R., Sinkevičiene A. (2013): Effect of organic mulches on the content of organic carbon in the soil. Estonian Journal of Ecology, 62: 100–106.
Chen H., Ferrari C., Angiuli M., Yao J., Raspi C., Bramanti E. (2010): Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydrate Polymers, 82: 772–778.
Corvasce M., Zsolnay A., D’Orazio V., Lopez R., Miano T.M. (2006): Characterization of water extractable organic matter in a deep soil profile. Chemosphere, 62: 1583–1590.
Cunha T.J.F., Novotny E.H., Madari B.E., Martin-Neto L., De O Rezende M.O., Canelas L.P., De M Benites V. (2009): Spectroscopy characterization of humic acids isolated from Amazonian Dark Earth Soils (Terra Preta de Índio). In: Woods W.I., Teixeira W.G., Lehman J., Steiner C., Winklerprins A., Rebellato L. (eds.): Amazonian Dark Earths: Wim Sombroek’s Vision, Berlin, Springer: 363–372.
Ellerbrock R.H., Gerke H.H., Bachmann J., Goebel M.-O. (2005): Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal, 69: 57–66.
Ellerbrock R.H., Gerke H.H., Böhm C. (2009): In situ DRIFT characterization of organic matter composition on soil structural surfaces. Soil Science Society of America Journal, 73: 531–540.
Fan W., Wu J., Ahmed S., Hu J., Chen X., Li X., Zhu W., Opoku-Kwanowaa Y. (2020): Short-term effects of different straw returning methods on the soil physicochemical properties and quality index in dryland farming in NE China. Sustainability (Switzerland), 12: 1–12.
Fér M., Leue M., Kodešová R., Gerke H.H., Ellerbrock R.H. (2016): Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors. Journal of Hydrology and Hydromechanics, 64: 111–120.
Ferreira J.P.A., Miranda I., Sousa V.B., Pereira H. (2018): Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS ONE, 13: 1–18.
Gao H., Chen X., Wei J., Zhang Y., Zhang L., Chang J., Thompson M.L. (2016): Decomposition dynamics and changes in chemical composition of wheat straw residue under anaerobic and aerobic conditions. PLoS ONE, 11: 1–17.
Goebel M.O., Bachmann J., Woche S.K., Fischer W.R. (2005): Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma, 128: 80–93.
Haas C., Gerke H.H., Ellerbrock R.H., Hallett P.D., Horn R. (2018): Relating soil organic matter composition to soil water repellency for soil biopore surfaces different in history from two Bt horizons of a Haplic Luvisol. Ecohydrology, 11: 1–11.
Hallett P.D., Young I.M. (1999): Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. European Journal of Soil Science, 50: 35–40.
Hamad A.M.A., Ates S., Olgun Ç., Gür M. (2019): Chemical composition and antioxidant properties of some industrial tree bark extracts. BioResources, 14: 5657–5671.
Hosseini Bai S., Blumfield T.J., Reverchon F. (2014): The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biology and Fertility of Soils, 50: 37–44.
IUSS Working Group WRB (2014): World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO.
Jakab G., Filep T., Kir C. (2019): Differences in mineral phase associated soil organic matter composition due to varying tillage intensity. Agronomy, 9: 1–11.
Jakšík O., Kodešová R., Kubiš A., Stehlíková I., Drábek O., Kapička A. (2015): Soil aggregate stability within morphologically diverse areas. Catena, 127: 287–299.
Jamil M., Munir M., Qasim M., Baloch J., Rehman K. (2005): Effect of different types of mulches and their duration on the growth and yield of Garlic (Allium sativum L.). International Journal Agriculture and Biology, 7: 588–591.
Jamir A., Dutta M. (2020): Effect of mulching on important soil physico-chemical properties of Khasi mandarin (Citrus reticulata Blanco) orchard under mid-hill region of Nagaland. Journal of Pharmacognosy and Phytochemistry, 9: 2854–2858.
Kader M.A., Senge M., Mojid M.A., Ito K. (2017): Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research, 168: 155–166.
Kader M.A.S.A., Begum M.A., Jewel A., Khan F.H., Khan N.I. (2019): Mulching as water-saving technique in dryland agriculture: A review. Bulletin of the National Research Centre, 43: 1–6.
Kumar A., Naresh R.K., Singh S., Mahajan N.C., Singh O. (2019): Soil aggregation and organic carbon fractions and indices in conventional and conservation agriculture under vertisol soils of sub-tropical ecosystems: A review. International Journal of Current Microbiology and Applied Sciences, 8: 2236–2253.
Laudicina V.A., Novara A., Barbera V., Egli M., Badalucco L. (2015): Long-term tillage and cropping system effects on chemical and biochemical characteristics of soil organic matter in a Mediterranean semiarid environment. Land Degradation and Development, 26: 45–53.
Leue M., Ellerbrock R.H., Gerke H.H. (2010): DRIFT mapping of organic matter composition at intact soil aggregate surfaces. Vadose Zone Journal, 9: 317–324.
Leue M., Gerke H.H., Godow S.C. (2015): Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay-illuvial horizons. Journal of Plant Nutrition and Soil Science, 178: 250–260.
Lu D., Tabil L.G., Wang D., Wang G., Emami S. (2014): Experimental trials to make wheat straw pellets with wood residue and binders. Biomass and Bioenergy, 69: 287–296.
Luna L., Miralles I., Andrenelli M.C., Gispert M., Pellegrini S., Vignozzi N., Solé-Benet A. (2016): Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena, 143: 256–264.
Mota G.S., Sartori C.J., Miranda I., Quilhó T., Mori F.A., Pereira H. (2017): Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina. PLoS ONE, 12: 1–14.
Nimmo J.R., Perkins K.S. (2002): Aggregate stability and size distribution. In: Dane J.H., Topp G.C. (eds.): Methods of Soil Analysis. Part 4 – Physical Methods. Madison, Soil Science Society of America: 317–328.
Pavlů L., Kodešová R., Fér M., Nikodem A., Němec F., Prokeš R. (2021): The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil and Tillage Research, 205: 104748.
Plazonić I., Barbarić-Mikočević Ž., Antonović A. (2016): Kemijski sastav slame kao alternative drvnoj sirovini za dobivanje vlakanaca. Drvna Industrija, 67: 119–125.
Qu B., Liu Y., Sun X., Li S., Wang X., Xiong K., Yun B., Zhang H. (2019): Effect of various mulches on soil physico-chemical properties and tree growth (Sophora japonica) in urban tree pits. PLoS ONE, 14: 1–12.
Ranjan P., Patle G.T., Prem M., Solanke K.R. (2017): Organic mulching – A water saving technique to increase the production of fruits and vegetables. Current Agriculture Research Journal, 5: 371–380.
Saleem Khan T., Mubeen U. (2012): Wheat straw: A pragmatic overview. Current Research Journal of Biological Sciences, 4: 673–675.
Sharma A.R., Singh R., Dhyani S.K., Dube R.K. (2010): Moisture conservation and nitrogen recycling through legume mulching in rainfed maize (Zea mays)-wheat (Triticum aestivum) cropping system. Nutrient Cycling in Agroecosystems, 87: 187–197.
Six J., Bossuyt H., Degryze S., Denef K. (2004): A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79: 7–31.
Sparks D.L. (1996): Methods of Soil Analysis. Part 3 – Chemical Methods. SSSA Book Series: 5. Madison, Soil Science Society of America, Inc., American Society of Agronomy, Inc.
Tivet F., de Moraes Sá J.C., Lal R., Milori D.M.B.P., Briedis C., Letourmy P., Pinheiro L.A., Borszowskei P.R., da Cruz Hartman D. (2013): Assessing humification and organic C compounds by laser-induced fluorescence and FTIR spectroscopies under conventional and no-till management in Brazilian Oxisols. Geoderma, 207–208: 71–81.
Tozluoğlu A., Özyürek Ö., Çöpür Y., Özdemir H. (2015): Integrated production of biofilm, bioethanol, and papermaking pulp from wheat straw. BioResources, 10: 7834–7853.
Turmel M.S., Speratti A., Baudron F., Verhulst N., Govaerts B. (2015): Crop residue management and soil health: A systems analysis. Agricultural Systems, 134: 6–16.
Wang L., Li X.G., Lv J., Fu T., Ma Q., Song W., Wang Y.P., Li F.M. (2017): Continuous plastic-film mulching increases soil aggregation but decreases soil pH in semiarid areas of China. Soil and Tillage Research, 167: 46–53.
Waliszewska B., Mleczek M., Zborowska M., Goliński P., Rutkowski P., Szentner K. (2019): Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose, 26: 6303–6315.
Wiedemeier D.B., Abiven S., Hockaday W.C., Keiluweit M., Kleber M., Masiello C.A., McBeath A.V., Nico P.S., Pyle L.A., Schneider M.P.W., Smernik R.J., Wiesenberg G.L.B., Schmidt M.W.I. (2015): Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 78: 135–143.
Yang Y.J., Dungan R.S., Ibekwe A.M., Valenzuela-Solano C., Crohn D.M., Crowley D.E. (2003): Effect of organic mulches on soil bacterial communities one year after application. Biology and Fertility of Soils, 38: 273–281.
Zhang S., Wang Y., Sun L., Qiu C., Ding Y., Gu H., Wang L., Wang Z., Ding Z. (2020): Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiology, 20: 1–13.
Zhao F., Wu Y., Hui J., Sivakumar B., Meng X., Liu S. (2021): Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance and Management, 16: 1–14.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti