Changes of soil bioavailable phosphorus content in the long-term field fertilizing experiment

https://doi.org/10.17221/175/2018-SWRCitation:Kulhánek M., Černý J., Balík J., Sedlář O., Vašák F. (2019): Changes of soil bioavailable phosphorus content in the long-term field fertilizing experiment. Soil & Water Res., 14: 240-245.
download PDF

The aim of this study is to describe the changes of bioavailable phosphorus content in soil in long-term 18 years field experiments with different fertilizing systems. The field experiments are located at three sites with different soil and climatic conditions in the Czech Republic (Červený Újezd, Humpolec and Prague-Suchdol). Same fertilizing systems and crop rotation (potatoes (maize) – winter wheat – spring barley) are realized at each site with following fertilizing treatments: (1) unfertilized treatment (control), (2) farmyard manure (FYM), (3) and (4) sewage sludge (SS 1 and SS 3), (5) mineral nitrogen (N), (6) mineral nitrogen with straw (N + straw) and (7) mineral nitrogen with phosphorus and potassium (NPK). The long-term fertilizing effect on available P content changes in soil was observed. Bioavailable phosphorus content in soil increased in treatments with organic fertilization after 18 year experiment at all sites. The treatments SS 3 had the highest increase at all sites. The highest bioavailable P content increase compared to control (258 mg/kg) was determined at site Červený Újezd. On the contrary, available phosphorus content decreased at treatments with mineral fertilization and control treatment among all sites. Bioavailable P content decrease in the treatment NPK was observed, although phosphorus was applied. The lowest differences in available P content among all fertilizing treatments were observed at the location Prague-Suchdol.

 

References:
Antoniadis V., Koutroubas S.D., Fotiadis S. (2015): Nitrogen, phosphorus, and potassium availability in manure-and sewage sludge-applied soil. Communications in Soil Science and Plant Analysis, 46: 393–404. https://doi.org/10.1080/00103624.2014.983241
 
Arvas O., Celebi S.Z., Yilmaz I.H. (2011): Effect of sewage sludge and synthetic fertilizer on pH, available N and P in pasture soils in semi-arid area, Turkey. African Journal of Biotechnology, 10: 16508–16515.
 
Černý J., Balík J., Kulhánek M., Čásová K., Nedvěd V. (2010): Mineral and organic fertilization efficiency in long-term stationary experiments. Plant, Soil and Environment, 56: 28–36. https://doi.org/10.17221/200/2009-PSE
 
Djodic F., Matsson L. (2013): Changes in plant-available and easily soluble phosphorus within 1 year after P amendment. Soil Use Management, 29: 45–54. https://doi.org/10.1111/j.1475-2743.2012.00436.x
 
Du Z.Y., Wang Q.H., Liu F.C., Ma H.L., Ma B.Y., Malhi S.S. (2013): Movement of phosphorus in a calcareous soil as affected by humic acid. Pedosphere, 23: 229–235. https://doi.org/10.1016/S1002-0160(13)60011-9
 
Eghball B. (2002): Soil properties as influenced by phosphorus- and nitrogen-based manure and compost applications. Agronomy Journal, 94: 128–135. https://doi.org/10.2134/agronj2002.0128
 
Gu X., Wang L., Wang L., Fan Y., Yang H., Long H. (2016): Monitoring available phosphorus content in soil of cultivated land based on hyperspectral technology. In: Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, July 10–15, 2016, Bejing: 6393–6396.
 
Káš M., Mühlbachová G., Kusá H., Pechová M. (2016): Soil phosphorus and potassium availability in long-term field experiments with organic and mineral fertilization. Plant, Soil and Environment, 62: 558–565.  https://doi.org/10.17221/534/2016-PSE
 
Kobza J., Gáborík Š. (2008): Current State and Development of Macro- and Micronutrients in Agricultural Soils of Slovakia. Bratislava, SSCRI (VÚPOP) Bratislava. (in Slovak)
 
Kobza J., Barančíková G., Bezák P., Dodok R., Grečo V., Hrivňáková K., Chlpík J., Lištjak M., Makovníková J., Mališ J., Píš V., Schlosserová J., Slávik O., Styk J., Širáň M. (2011): Uniform Analytical Procedures in Soil. Bratislava, SSCRI (VÚPOP) Bratislava. (in Slovak)
 
Kodešová R., Kočárek M., Klement A., Golovko O., Koba O., Fér M., Nikodém A., Vondráčková L., Jakšík O., Grabic R. (2016): An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Science of the Total Environment, 544: 369–381. https://doi.org/10.1016/j.scitotenv.2015.11.085
 
Kondratowicz-Maciejewska K., Kobierski M. (2011): Content of available magnesium, phosphorus and potassium forms in soil exposed to varied crop rotation and fertilisation. Journal of Elementology, 16: 543–553. https://doi.org/10.5601/jelem.2011.16.4.04
 
Kruse J., Abraham M., Amelung W., Baum C., Bol R., Kuhn O., Lewandowski H., Niederberger J., Oelmann Y., Ruger C., Santner J., Siebers M., Siebers N., Spohn M., Vestergren J., Vogts A., Leinweber P. (2015): Innovative methods in soil phosphorus research: A review. Journal of Plant Nutrition and Soil Science, 178: 43–88. https://doi.org/10.1002/jpln.201400327
 
Kulhánek M., Balík J., Černý J., Vaněk V. (2009): Evaluation of phosphorus mobility in soil using different extraction methods. Plant, Soil and Environment, 55: 267–272. https://doi.org/10.17221/43/2009-PSE
 
Lindsay W.L. (1979): Chemical Equilibria in Soils. New York, John Wiley and Sons Inc.
 
Liu E.K., Yan C.R., Mei X.R., He W.Q., Bing S.H., Ding L.P., Liu Q., Liu S.A., Fan T.L. (2010): Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 158: 173–180. https://doi.org/10.1016/j.geoderma.2010.04.029
 
Mehlich A. (1984): Mehlich-3 soil test extractant – a modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409–1416. https://doi.org/10.1080/00103628409367568
 
Mikulášová B., Lapčík L., Mašek I. (1997): Lignite: Structure, properties and applications. Chemické Listy, 91: 160–168.
 
Mohanty S., Paikaray N.K., Rajan A.R. (2006): Availability and uptake phosphorus from organic manures in groundnut (Arachis hypogea L.) and corn (Zea mays L.) sequence using radio tracer technique. Geoderma, 133: 225–230. https://doi.org/10.1016/j.geoderma.2005.07.009
 
Nest T.V., Vandecasteele B., Ruysschaert G., Cougnon M., Merckx R., Reheul D. (2014): Effect of organic and mineral fertilizers on soil P and C levels, crop yield and P leaching in a long-term trial on a silt loam soil. Agriculture, Ecosystems and Environment, 197: 309–317. https://doi.org/10.1016/j.agee.2014.07.019
 
Nogueirol R.C., Melo W.J., Bertoncini E.I., Alleoni L.R.F. (2015): Effectiveness of extractants for bioavailable phosphorus in tropical soils amended with sewage sludge. Applied and Environmental Soil Science, 2015: 720167. https://doi.org/10.1155/2015/720167
 
Pierzynski G.M., Vance G.F., Sims J.T. (2005): Soils and Environmental Quality. 3rd Ed. Boca Raton, CRC Press.
 
Schroder J.L., Zhang H.L., Richards J.R., Payton M.E. (2009): Interlaboratory validation of the Mehlich 3 method as a universal extractant for plant nutrients. Journal of AOAC International, 92: 995–1008.
 
Skwierawska M., Zawartka L., Zawadzki B. (2008): The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant, Soil and Environment, 54: 171–177. https://doi.org/10.17221/391-PSE
 
Sommers L.E. (1977): Chemical composition of sewage sludges and analysis of their potential use as fertilizers. Journal of Environmental Quality, 6: 225–232. https://doi.org/10.2134/jeq1977.00472425000600020026x
 
Souza R.F., Faquin V., Lima Sobrinho R.R., Oliveira E.A.B. (2010): Liming and organic fertilizer: influence on phosphorus adsorption in soils. Revista Brasiliera de Ciencia do Solo, 34: 143–150. https://doi.org/10.1590/S0100-06832010000100015
 
Troeh R.F., Thompson L.M. (2005): Soils and Soil Fertility. 6th Ed. Ames, Blackwell Publishing.
 
Wu L.H., Cheng M.M., Li Z., Ren J., Shen L.B., Wang S.F., Luo Y.M., Christie P. (2012): Major nutrients, heavy metals and PBDEs in soils after long-term sewage sludge application. Journal of Soils and Sediments, 12: 531–541. https://doi.org/10.1007/s11368-012-0485-1
 
WRB (2015): World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome, FAO.
 
Zamuner E.C., Picone L.I., Echeverria H.E. (2006): Comparison of phosphorus fertilization diagnostic methods for wheat under no-tillage. Soil and Tillage Research, 89: 70–77. https://doi.org/10.1016/j.still.2005.06.010
 
Zbíral J., Němec P. (2002): Comparison of Mehlich 2, Mehlich 3, CAL, Egner, Olsen, and 0.01 M CaCl2 extractants for determination of phosphorus in soils. Communications in Soil Science and Plant Analysis, 33: 3405–3417. https://doi.org/10.1081/CSS-120014534
 
Zhang H.L., Kariuki S., Schroder J.L., Payton M.E., Focht C. (2009): Interlaboratory validation of the Mehlich 3 method for extraction of plant-available phosphorus. Journal of AOAC International, 92: 91–102.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences