The impact of forest naturalness and tree species composition on soil organic carbon content in areas with unnatural occurrence of Norway spruce in the Czech Republic

https://doi.org/10.17221/19/2022-SWRCitation:

Horváth M., Hanáková Bečvářová P., Šarapatka B., Zouhar V. (2022): The impact of forest naturalness and tree species composition on soil organic carbon content in areas with unnatural occurrence of Norway spruce in the Czech Republic. Soil & Water Res., 17: 139–148.

supplementary materialdownload PDF

Climate change has increased attention paid in the research to forest soils and tree species composition, in respect to the potential for carbon sequestration. It is known that forest stands are able to store soil organic carbon (SOC), but little is known about the effect of forest naturalness on SOC content. This is important in relation of dying of unnatural spruce stands. It is necessary to determine a suitable composition of tree species which will replace them. This research is based on 248 plots with oak, beech, and spruce stands and mixtures of these species, with measured values of SOC. Our results show that autochthonous and mixed stands, in terms of tree species composition, in the study area had a higher SOC content than allochthonous and pure stands. In addition, it was found that autochthonous oak and beech stands, especially in mixtures, had a higher SOC content than allochthonous spruce stands (monocultures). On the basis of the presented results, it is possible to optimize the future tree species composition of stands in the study area, which currently have an allochthonous representation of spruce, to provide better function of carbon sequestration and resistance to climate change.

References:
Ammer C., Bickel E., Kölling C. (2008): Converting Norway spruce stands with beech – A review of arguments and techniques. Austrian Journal of Forest Science, 125: 3–26.
 
Andivia E., Rolo V., Jonard M., Formánek P., Ponette Q. (2016): Tree species identity mediates mechanisms of top soil carbon sequestration in a Norway spruce and European beech mixed forest. Annals of Forest Science, 73: 437–447. https://doi.org/10.1007/s13595-015-0536-z
 
Angst G., Mueller K.E., Eissenstat D.M., Trumbore S., Freeman K.H., Hobbie S.E., Chorover J., Oleksyn J., Reich P.B., Mueller C.W. (2019): Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Global Change Biology, 25: 1529–1546. https://doi.org/10.1111/gcb.14548
 
Augusto L., De Schrijver A., Vesterdal L., Smolander A., Prescott C., Ranger J. (2015): Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews of the Cambridge Philosophical Society, 90: 444–466. https://doi.org/10.1111/brv.12119
 
Bečvářová P., Horváth M., Šarapatka B., Zouhar V. (2018): Dynamics of soil organic carbon (SOC) content in stands of Norway spruce (Picea abies) in central Europe. iForest, 11: 734–742. https://doi.org/10.3832/ifor2521-011
 
Błońska E., Klamerus-Iwanb A., Lasotaa J., Grubaa P., Pachc M., Pretzsch H. (2018): What characteristics of soil fertility can improve in mixed stands of Scots pine and European beech compared with monospecific stands? Communications in Soil Science and Plant Analysis, 49: 237–247.  https://doi.org/10.1080/00103624.2017.1421658
 
Bojko O., Kabala C. (2017): Organic carbon pools in mountain soils – Sources of variability and predicted changes in relation to climate and land use changes. Catena, 149: 209–220. https://doi.org/10.1016/j.catena.2016.09.022
 
Čermák P., Jankovský L., Cudlín P. (2004): Risk evaluation of the climatic change impact on secondary Norway spruce stands as exemplified by the Křtiny Training Forest Enterprise. Journal of Forest Science, 50: 256–262. https://doi.org/10.17221/4623-JFS
 
Devliegher W., Verstraete W. (1997): The effect of Lumbricus terrestris on soil in relation to plant growth: Effects of nutrient-enrichment processes (NEP) and gut-associated processes (GAP). Soil Biology and Biochemistry, 29: 341–346. https://doi.org/10.1016/S0038-0717(96)00096-X
 
Finér L., Helmisaari H.-S., Lõhmus K., Majdi H., Brunner I., Børja I., Eldhuset T., Goldbold D., Grebenc T., Konôpka B., Kraigher H., Möttönen M.-R., Ohasi M., Olekysen J., Ostonen I., Uri V., Vanguelovs E. (2007): Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce, (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems, 141: 394–405.  https://doi.org/10.1080/11263500701625897
 
Frouz J., Pižl V., Cienciala E., Kalčík J. (2009): Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry, 94: 111–121. https://doi.org/10.1007/s10533-009-9313-0
 
Gurmesa G.A., Schmidt I.K., Gundersen P., Vesterdal L. (2013): Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens. Forest Ecology and Management, 309: 47–57. https://doi.org/10.1016/j.foreco.2013.02.015
 
Hilmers T., Biber P., Knoke T., Pretzsch H. (2020): Assessing transformation scenarios pure Norway spruce to mixed uneven-aged forests in mountain areas. European Journal of Forest Research, 139: 567–584. https://doi.org/10.1007/s10342-020-01270-y
 
Hlásny T., Pajtík J., Balázs B., Barcza Z., Turčáni M., Fabrika M., Sedmák R., Churkina G. (2011): Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research, 47: 219–236. https://doi.org/10.3354/cr01024
 
Hobbie S.E., Reich P.B., Oleksyn J., Ogdahl M., Zytkowiak R., Hale C., Karolewski P. (2006): Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87: 2288–2297. https://doi.org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2
 
IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO.
 
Jandl R., Lindner M., Vesterdal L., Bauwens B., Baritz R., Hagedorn F., Johnson D.W., Minkkinen K., Byrne K.A. (2007): How strongly can forest management influence soil carbon sequestration? Geoderma, 137: 253–268. https://doi.org/10.1016/j.geoderma.2006.09.003
 
Jonard M., Nicolas M., Caignet I., Ponette Q., Saenger A., Coomes D.A. (2017): Forest soils in France are sequestering substantial amounts of carbon. Science of the Total Environment, 574: 616–628. https://doi.org/10.1016/j.scitotenv.2016.09.028
 
Kern N.V., Cremer M., Prietzel J. (2016): Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. Forest Ecology and Management, 367: 30–40. https://doi.org/10.1016/j.foreco.2016.02.020
 
Klimo E., Kulhavý J., Hager H. (2000): Spruce Monocultures in Central Europe: Problems and Prospects. EFI Proceedings No. 33. Joensuu, European Forest Institute.
 
Löf M., Bergquist J., Brunet J., Karlsson M., Welander N.T. (2010): Conversion of Norway spruce stands to broadleaved woodland-regeneration systems, fencing and performance of planted seedlings. Ecological Bulletins, 53: 165–174.
 
Lorenz K., Lal R. (2010): Carbon Sequestration in Forest Ecosystems. Netherlands, Springer: 271–277.
 
Lorenz M., Sören T.-B. (2019): Tree species affect soil organic matter stocks and stoichiometry in interaction with soil microbiota. Geoderma, 353: 35–46.  https://doi.org/10.1016/j.geoderma.2019.06.021
 
López-Marcos D., Martínez-Ruiz C., Turrión M.-B., Jonard M., Titeux H., Ponette Q., Bravo F. (2018): Soil carbon stocks and exchangeable cations in monospecific and mixed pine forests. European Journal of Forest Research, 137: 831–847.  https://doi.org/10.1007/s10342-018-1143-y
 
Macků J. (2012): Methodology for establishing the degree of naturalness of forest stands. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 18: 161–165.
 
Marek M.V., Ač A., Apltauer J., Bodlák L., Burešová R., Cienciala E., Cudlín P., Cudlínová E., Czerný R., Čížková H., Dubrovský M., Dušek J., Exnerová Z., Havránková K., Henžlík V., Janderková J., Janouš D., Lapka M., Macků J., Matějka K., Pavelka M., Pechal L., Pokorný J., Pokorný R., Schneider J., Stará L., Středa T., Šefrna L., Taufarová K., Tomášková I., Urban O., Vyskot I., Zatloukal V., Zemek F., Zitová M. (2011): Carbon in Ecosystems of Czech Republic in Changing Climate. Prague, Academia: 129–177. (in Czech).
 
Mareschal L., Bonnaud P., Turpault M., Ranger J. (2010): Impact of common European tree species on the chemical and physicochemical properties of fine earth: An unusual pattern. European Journal of Soil Science, 61: 14–23. https://doi.org/10.1111/j.1365-2389.2009.01206.x
 
Pan Y., Birdsey R., Fang J., Houghton R.A., Birdsey R.A. (2011): A large and persistent carbon sink in the world’s forests. Science, 333: 988–993. https://doi.org/10.1126/science.1201609
 
Prescott C.E. (2002): The influence of the forest canopy on nutrient cycling. Tree Physiology, 22: 1193–1200. https://doi.org/10.1093/treephys/22.15-16.1193
 
Pretzsch H., Ďurský J. (2002): Growth reaction of Norway spruce (Picea abies (L.) Karst) and European beech (Fagus silvatica L.) to possible climatic changes in Germany. A sensitivity study. Forstwissenschaftliches Centralblatt, 121: 145–154.
 
Pretzsch H., Bielak K., Block J., Bruchwald A., Dieler J., Ehrhart H.-P., Kohnle U., Nagel J., Spellmann H., Zasada M., Zingg A. (2013): Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132: 263–280. https://doi.org/10.1007/s10342-012-0673-y
 
Puhe J. (2003): Growth and development of the root system of Norway spruce (Picea abies) in forest stands – A review. Forest Ecology and Management, 175: 253–273. https://doi.org/10.1016/S0378-1127(02)00134-2
 
Reich P.B., Oleksyn J., Modrzynski J., Mrozinski P., Hobbie S.E., Eissenstat D.M., Chorover J., Chadwick O.A., Hale C.M., Tjoelker M.G. (2005): Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecology Letters, 8: 811–818. https://doi.org/10.1111/j.1461-0248.2005.00779.x
 
Rumpel C., Kögel-Knabner I. (2011): Deep soil organic matter – A key but poorly underwood component of terrestrial C cycle. Plant and Soil, 338: 143–158. https://doi.org/10.1007/s11104-010-0391-5
 
Schelfhout S. (2010): Tree species effects on earthworm communities in Danish and Flemish forests [Ph.D. Thesis.] Ghent, University of Ghent, Faculty of Bioscience Engineering.
 
Schwab N., Bürzle B., Böhner J., Chaudhary R.P., Scholten T., Schickhoff U. (2022): Environmental drivers of species composition and tree species density of a near natural Central Himalayan treeline ecotone: Consequences for the response to climate change. In: Schickhoff U., Singh R., Mal S. (eds.): Mountain Landscapes in Transition. Sustainable Development Goals Series. Cham, Springer: 349–370.
 
Spiecker H., Hansen J., Klimo E., Skovsgaard J.P., Sterba H., von Teuffel K. (2004): Norway Spruce Conversion – Options and Consequences. European Forest Research Institute Research Reports No. 18. Leiden, Boston, Köln, Brill.
 
Vesterdal L., Schmidt I.K., Callesen I., Nilsson L.O., Gundersen P. (2008): Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255: 35–48. https://doi.org/10.1016/j.foreco.2007.08.015
 
Vesterdal L., Elberling B., Christiansen J.R., Callesen I., Schmidt I.K. (2012): Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264: 185–196. https://doi.org/10.1016/j.foreco.2011.10.009
 
Vesterdal L., Clarke N., Sigurdsson B.D., Gunderson P. (2013): Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309: 4–18. https://doi.org/10.1016/j.foreco.2013.01.017
 
Walkley A., Black I.A. (1934): An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29–38. https://doi.org/10.1097/00010694-193401000-00003
 
Wiesmeier M., Prietzel J., Barthold F., Spörlein P., Geuß U., Hangen E., Reischl A., Schilling B., von Lützow M., Kögel-Knabner I. (2013): Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria) – Implications for carbon sequestration. Forest Ecology and Management, 295: 162–172. https://doi.org/10.1016/j.foreco.2013.01.025
 
Zbíral J., Malý S., Váňa M., Čuhel J., Fojtlová E., Čižmár D., Žalmanová A., Srnková J., Obdržálková E. (2011): Standard Operating Procedure, Soil analysis III. Brno, Central Institute for Supervising and Testing in Agriculture. (in Czech)
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti