Early changes in soil organic carbon following afforestation of former agricultural land
Chan Y. (2008): Increasing soil organic carbon of agricultural land. Primefact, 735: 1–5.
Chen Z., Yu G., Wang Q. (2020): Effects of climate and forest age on the ecosystem carbon exchange of afforestation. Journal of Forestry Research, 31: 365–374.
https://doi.org/10.1007/s11676-019-00946-5
Cukor J., Vacek Z., Linda R., Bílek L. (2017a): Carbon sequestration in soil following afforestation of former agricultural land in the Czech Republic. Central European Forestry Journal, 63: 97–104.
https://doi.org/10.1515/forj-2017-0011
Cukor J., Linhart L., Vacek Z., Baláš M., Linda R. (2017b): The effect of Alginite fertilization on selected tree species seedlings performance on afforested agricultural lands. Central European Forestry Journal, 63: 48–56.
https://doi.org/10.1515/forj-2017-0001
Dłuzewski P., Wiatrowska K., Kozłowski M. (2019): Seasonal changes in organic carbon content in post–arable forest soils. Soil Science Annual, 70: 3–12.
https://doi.org/10.2478/ssa-2019-0001
Donkin M.J. (1991): Loss-on-ignition as an estimator of soil organic carbon in A-horizon forestry soils. Communication in Soil Science and Plant Analysis, 22: 233–241.
https://doi.org/10.1080/00103629109368411
Dumbrovský M., Larišová L., Sobotková V., Kulihová M. (2019): Comparison of different texture analysis for soil erodibility calculations of loamy and sandy‑loam soils in Moravian regions. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67: 383–393.
https://doi.org/10.11118/actaun201967020383
Ens J., Farrell R.E., Bélanger N. (2013): Early effects of afforestation with willow (Salix purpurea “Hotel“) on soil carbon and nutrient availability. Forests, 4: 137–154
https://doi.org/10.3390/f4010137
Gömöryová E., Vass D., Pichler V., Gömöry D. (2009): Effect of alginite amendment on microbial activity and soil water content in forest soils. Biologia, 64: 585–588.
https://doi.org/10.2478/s11756-009-0081-z
Hamkalo Z., Bedernichek T. (2014): Total, cold and hot water extractable organic carbon in soil profile: impact of land-use change. Zemdirbyste, 101: 125–132.
https://doi.org/10.13080/z-a.2014.101.016
Holubík O., Podrázský V., Vopravil J., Khel T., Remeš J. (2014): Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile. Soil and Water Research, 9: 192–200.
https://doi.org/10.17221/104/2013-SWR
Hoogsteen M.J.J., Lantinga E.A., Baakker E.J., Groot J.C.J., Tittonell P.A. (2015): Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. Euroasian Journal of Soil Science, 66: 320–328.
https://doi.org/10.1111/ejss.12224
Hoogsteen M.J.J., Lantinga E.A., Bakker E.J., Tittonell P.A. (2018): An evaluation of the loss-on-ignition method for determining the soil organic matter content of calcareous soils. Communication in Soil Science and Plant Analysis, 49: 1541–1552.
https://doi.org/10.1080/00103624.2018.1474475
Hou G., Delang C.O., Lu X. (2020): Afforestation changes soil organic carbon stocks on sloping land: The role of previous land cover and tree species. Ecological Engineering, 152: 1–9.
https://doi.org/10.1016/j.ecoleng.2020.105860
IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO.
Jensen J.L., Christensen B.T., Schjønning P., Watts W., Munkholm L.J. (2018): Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure. European Journal of Soil Science, 69: 604–612.
https://doi.org/10.1111/ejss.12558
Konen M.E., Jacobs P.M., Burras C.L., Talaga B.J., Mason J.A. (2002): Equations for predicting soil organic carbon using loss-on-ignitionfor noth central U.S. soils. Soil Science Society of America Journal, 66: 1878–1881.
https://doi.org/10.2136/sssaj2002.1878
Lamptey S., Li L., Xie J. (2018): Impact of nitrogen fertilization on soil respiration and net ecosystem production in maize. Plant, Soil and Environment, 64: 353–360.
https://doi.org/10.17221/217/2018-PSE
Lara-Gómez M.A., Navarro-Cerrillo R.M., Ceacero C.J., Riuz-Goméz F.J., Díaz-Hernández J.L., Rodriguez G.P. (2020): Use of aerial laser scanning to assess the effect on C sequestration of oak. (Quercus ilex L. subsp. ballota [Desf.]Samp–Q. suber L.): Afforestation on agricultural land. Geosciences, 10: 1–18.
https://doi.org/10.3390/geosciences10020041
MZe (2013): Information on Forests and Forestry in the Czech Republic by 2012. Prague, The Ministry of Agriculture of the Czech Republic.
MZe (2014): Information on Forests and Forestry in the Czech Republic by 2013. Prague, The Ministry of Agriculture of the Czech Republic.
MZe (2015): Information on Forests and Forestry in the Czech Republic by 2014. Prague, The Ministry of Agriculture of the Czech Republic.
MZe (2017): Information on Forests and Forestry in the Czech Republic by 2016. Prague, The Ministry of Agriculture of the Czech Republic.
MZe (2018): Information on Forests and Forestry in the Czech Republic by 2017. Prague, The Ministry of Agriculture of the Czech Republic.
Nikodemus O., Kaupe D., Kukuls I., Brumeli G., Kasparinskis R., Dauskane I., Treiman A. (2020): Effect of afforestation of agricultural land with grey alder (Alnus incana (L.) Moench) on soil chemical properties, comparing two contrasting soil groups. Forest Ecosystems, 7: 1–10.
https://doi.org/10.1186/s40663-020-00253-0
Poleno Z., Vacek S., Podrázský V., Remeš J., Mikeska M., Kobliha J., Bílek L., Baláš M. (2011): Silviculture I. Ecological Principles of Silviculture. Kostelec nad Černými lesy, Lesnická práce. (in Czech)
Prudnikova E.Y., Savin I.Y. (2015): Satellite assessment of dehumification of arable soils in Saratov area. Eurasian Soil Science, 48: 533–539.
https://doi.org/10.1134/S1064229315050075
Ritter E. (2007): Carbon, nitrogen and phosphorus in volcanic soils following afforestation with native birch (Betula pubescens) and introduced larch (Larix sibirica) in Iceland. Plant and Soil, 295: 239–251.
https://doi.org/10.1007/s11104-007-9279-4
Rytter R.M., Rytter L. (2020): Carbon sequestration at land use conversion – Early changes in total carbon stocks for six tree species grown on former agricultural land. Forest Ecology and Management, 466: 1–11.
https://doi.org/10.1016/j.foreco.2020.118129
Smith P. (2004): Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy, 20: 229–236.
https://doi.org/10.1016/j.eja.2003.08.002
Soil Science Division Staff (2017): Soil survey manual. In: Ditzler C., Scheffe K., Monger H.C. (eds): USDA Handbook No. 18. Washington DC, Government Printing Office.
Špulák O., Kacálek D. (2011): History of non-forest land afforestation in the Czech Republic. Zprávy lesnického výzkumu, 56: 49–57. (in Czech)
Středa T., Vlček V., Rožnovský J. (2008): Carbon sequestration in the agroecosystem. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2: 167–174. (in Czech)
https://doi.org/10.11118/actaun200856020167
Sun H., Nelson M., Chen F., Husch J. (2010): Soil mineral structural water loss during loss on ignition analyses. Canadian Journal of Soil Science, 89: 603–610.
https://doi.org/10.4141/CJSS09007
Sutherland R.A. (1998): Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia, 389: 153–167.
https://doi.org/10.1023/A:1003570219018
Vesterdal L., Ritter E., Gundersen P. (2002): Changes in soil organic carbon following afforestation of former arable land. Forest Ecology and Management, 169: 137–147.
https://doi.org/10.1016/S0378-1127(02)00304-3
Vopravil J., Podrázský V., Khel T., Holubík O., Vacek S. (2014): Effect of afforestation of agricultural soils and tree species composition on soil physical chracteristics changes. Ekológia Bratislava, 33: 67–80.
Vopravil J., Podrázský V., Batysta M., Novák P., Havelková L., Hrabalíková M. (2015): Identification of agricultural soils suitable for afforestation in the Czech Republic using a soil database. Journal of Forest Science, 61: 141–147.
https://doi.org/10.17221/123/2014-JFS
Vopravil J., Podrázský V., Holubík O., Vacek S., Beitlerová H., Vacek Z. (2017): Principles of Establishment of Stands on Former Agricultural Land in the Framework of Plots Defined for Afforestation. Praha, VUMOP. (in Czech)
Westman C.J., Hytönen J., Wall A. (2006): Loss-on-ignition in the determination of pools of organic carbon in soils of forests and afforested arable fields. Communication in Soil Science and Plant Analysis, 37: 1059–1075.
https://doi.org/10.1080/00103620600586292
Williams D.R., Phalan B., Feniuk C., Green R.E., Balmford A. (2018): Carbon storage and land-use strategies in agricultural landscapes across three continents. Current Biology, 28: 2500–2505.
https://doi.org/10.1016/j.cub.2018.05.087
Wright A.L., Wang Y., Reddy K.R. (2008): Loss-on-ignition method to assess soil organic carbon in calcareous Everglades wetlands. Communication in Soil Science and Plant Analysis, 39: 3074–3083.
https://doi.org/10.1080/00103620802432931
Xu M., Gao D., Fu S., Lu X., Wu S., Han X., Yang G., Feng Y. (2020): Long-term effects of vegetation and soil on the microbial communities following afforestation of farmland with Robinia pseudoacacia plantations. Geoderma, 367: 1–11.
Zhang Q., Jia X., Wei X., Shao M., Li T., Yu Q. (2020): Total soil organic carbon increases but becomes more labile after afforestation in China’s Loess Plateau. Forest Ecology and Management, 461: 1–7.
https://doi.org/10.1016/j.foreco.2020.117911
Zhi J., Jing C., Lin S., Zhang C., Liu Q., DeGloria S. D., Wu J. (2014): Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods. PLoS ONE, 9: 1–8.
https://doi.org/10.1371/journal.pone.0097757