Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China

Wu T.H., Hu Y.F., Zhang Y.Y., Shu X.Y., Yang Z.P., Zhou W., Huang C.Y., Li J., Li Z., He J., Yu Y. (2022): Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China. Soil & Water Res., 17: 211–221.

download PDF

Grasslands are the main land use types in China, but their reclamation into croplands can influence the terrestrial carbon and, consequently, impact the global carbon balance. The long-term reclamation of alpine-cold grasslands to croplands are expected to decrease the soil organic carbon (SOC) and its fractions. Here, we conducted an in situ systematic study to measure the SOC and its fraction in soils sampled in an alpine-cold grassland with a gradient of cultivation history from 0 to 40 years. The SOC and its fractions significantly decreased after reclamation (P < 0.05), and the changes in the 0–20 cm soil layer were the greatest among the three sampling depths. After 40 years of reclamation, the SOC content and storage at 0–20 cm decreased by 74 and 60%, respectively. The decreases in the soil labile carbon fractions were more rapid and apparent than the SOC, especially the particular organic carbon (POC), which decreased by 82%. The soil humus carbon fractions also decreased, particularly the humic acid carbon (HAC), which decreased by 81%. The reduction rates of SOC and its fractions gradually decreased with an increase in the cultivation history. Besides, the ratios of the optical densities or absorbances of humic acid (HA) and fulvic acid (FA) solutions at 465 and 665 nm (E4/E6 ratios) and the hue coefficient (Δlog K values), which is the logarithm disparity between the 400 and 600 nm absorbance of the HA (FA) substance, in the solution gradually decreased, indicating that the quality of the soil humus decreased. The reclamation significantly decreased the SOC and its fractions in the alpine-cold soils, which should not be underestimated in the impact on the terrestrial carbon cycles and balance in the long run.

Andreas R., Zhang J. (2014): Characteristics of adsorption interactions of cadmium (II) onto humin from peat soil in freshwater and seawater media. Bulletin of Environmental Contamination and Toxicology, 92: 352–357.
Blair G.J., Lefroy R.D.B., Lisle L. (1995): Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46: 1459–1466.
Bossuyt H., Six J., Hendrix P.F. (2005): Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry, 37: 251–258.
Bu N.S., Qu J.F., Li G., Zhao B., Zhang R.J., Fang C.M. (2015): Reclamation of coastal salt marshes promoted carbon loss from previously sequestered soil carbon pool. Ecological Engineering, 81: 335–339.
Cao H., Jia M., Song J., Xun M., Fan W., Yang H. (2021): Rice-straw mat mulching improves the soil integrated fertility index of apple orchards on cinnamon soil and fluvo-aquic soil. Scientia Horticulturae, 278: 109837.
Chen S.B., Zhu Y.G., Ma Y.B. (2006): The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, 134: 74–79.
Chen Y., Senesi N., Schnitzer M. (1977): Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal, 41: 352–358.
Cui J., Li Z.X., Liu Z.T., Ge B.M., Fang C.M., Zhou C.L., Tang B.P. (2014): Physical and chemical stabilization of soil organic carbon along a 500-year cultived soil chronosequence originating from estuarine wetlands: Temporal patterns and land use effects. Agriculture, Ecosystems & Environment, 196: 10–20.
Cui T.T., Li Z.H., Wang S.J. (2017): Effects of in-situ straw decomposition on composition of humus and structure of humic acid at different soil depths. Journal of Soil & Sediments, 17: 2391–2399.
Davidson E.A., Ackerman I.L. (1993): Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 20: 161–193.
Ensinas S.C., Serra A.P., Marchetti M.E., Silva E.F.d., Prado E.A.F.d., Lourente E.R.P., Altomar P.H., Potrich D.C., Martinez M.A., Conrad V.d.A., Jesus M.V., Kadri T.C.E.l. (2016): Cover crops affect on soil organic matter fractions under no till system. Australian Journal of Crop Science, 10: 503–512.
Fontaine S., Barot S., Barré P., Bdioui N., Mary B., Rumpel C. (2007): Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450: 277–280.
Fröberg M., Hansson K., Kleja D.B., Alavi G. (2011): Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden. Forest Ecology and Management, 262: 1742–1747.
Goodrick I., Nelson P.N., Banabas M., Wurster C.M., Bird M.I. (2014): Soil carbon balance following conversion of grassland to oil palm. GCB Bioenergy, 7: 263–272.
Grace J., Mitchard E., Gloor E. (2014): Perturbations in the carbon budget of the tropics. Global Change Biology, 20: 3238–3255.
Gu B., Schmitt J., Chen Z., Liang L., McCarthy J.F. (1994): Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology, 28: 38–46.
Horwath W.R., Kuzyakov Y. (2018): The potential for soils to mitigate climate change through carbon sequestration. Developments in Soil Science, 35: 61–92.
Hu Y.J., Xiang D., Veresoglou S.D., Chen F., Chen Y.L., Hao Z.P., Zhang X., Chen B.D. (2014): Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biology and Biochemistry, 77: 51–57.
Hu Y.F., Jiang S.L., Yuan S., Deng L.J., Xiao H.H., Shu X.Y., Chen G.D., Xia J.G. (2017a): Changes in soil organic carbon and its active fractions in different desertification stages of alpine-cold grassland in the eastern Qinghai–Tibet Plateau. Environmental Earth Sciences, 76: 348.
Hu Y.G., Wang Z.R., Wang Q., Wang S.P., Zhang Z.S., Zhang Z.H., Zhao Y. (2017b): Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow. Journal of Soils and Sediments, 17: 326–339.
Jones M.B., Donnelly A. (2004): Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytologist, 164: 423–439.
Jones D.L., Willett V.B. (2006): Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38: 991–999
Kölbl A., Schad P., Jahn R., Amelung W., Bannert A., Cao Z.H., Fiedler S., Kalbitz K., Lehndorff E., Müller-Niggemann C., Schloter M., Schwark L., Vogelsang V., Wissing L., Kögel-Knabner I. (2014): Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma, 228: 67–89.
Lal R. (2001): World cropland soils as a source or sink for atmospheric carbon. Advances in Agronomy, 71: 145–191.
Lal R. (2004): Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623–1627.
Li C.F., Yue L.X., Kou Z.K., Zhang Z.S., Wang J.P., Cao C.G. (2012): Short-term effects of conservation management practices on soil labile organic carbon fractions under a rape–rice rotation in central China. Soil & Tillage Research, 119: 31–37.
Li Q.Q., Zhang H., Jiang X.Y., Luo Y.L., Wang C.Q., Yue T.X., Li B., Gao X.S. (2017): Spatially distributed modeling of soil organic carbon across China with improved accuracy. Journal of Advances in Modeling Earth Systems, 9: 1167–1185.
Li S., Zhang S.R., Pu Y.L., Li T., Xu X.X., Jia Y.X., Deng O.P., Gong G.S. (2016): Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 155: 289–297.
Li X.G., Li F.M., Rengel Z., Wang Z.F. (2006): Cultivation effects on temporal changes of organic carbon and aggregate stability in desert soils of Hexi Corridor region in China. Soil and Tillage Research, 91: 22–29.
Li Y.F., Jiang P.K., Chang S.X., Wu J., Lin L. (2010): Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in southeast China. Journal of Soils and Sediments, 10: 739–747.
Liu F., Wang D., Zhang B., Huang J. (2021): Concentration and biodegradability of dissolved organic carbon derived from soils: A global perspective. Science of the Total Environment, 754: 142378.
Liu S., Zhang Y., Zong Y., Hu Z., Wu S., Zhou J., Jin Y.G., Zou J.W. (2016): Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. GCB Bioenergy, 8: 392–406.
Lu R.K. (2000): Chemical Analysis Method of Agricultural Soil. Beijing, China Agricultural Technology Press. (in Chinese)
Meng L., Ding W.X., Cai Z.C. (2005): Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology and Biochemistry, 37: 2037–2045.
Navarrete I.A., Tsutsuki K., Navarrete R.A. (2010): Humus composition and the structural characteristics of humic substances in soils under different land uses in Leyte, Philippines. Soil Science and Plant Nutrition, 56: 289–296.
Ni J. (2002): Carbon storage in grasslands of China. Journal of Arid Environments, 50: 205–218.
Oduor C.O., Karanja N.K., Onwonga R.N., Mureithi S.M., Pelster D., Nyberg G. (2018): Enhancing soil organic carbon, particulate organic carbon and microbial biomass in semi-arid rangeland using pasture enclosures. BMC Ecology, 18: 45.
Post W.M., Emanuel W.R., Zinke P.J., Stangenberger A.G. (1982): Soil carbon pools and world life zones. Nature, 298: 156–159.
Qi Y.C., Dong Y.S., Liu J.Y., Domroes M., Geng Y.B., Liu L.X., Liu X.R., Yang X.H. (2007): Effect of the conversion of grassland to spring wheat field on the CO2 emission characteristics in Inner Mongolia, China. Soil and Tillage Research, 94: 310–320.
Ramesh T., Bolan N.S., Kirkham M.B., Wijesekara H., Kanchikerimath M., Rao C.S., Sandeep S., Rinklebe J., Choudhury Y.S.O.B.U., Wang H.L., Tang C.X., Wang X.J., Song Z.L., Freeman II.O.W. (2019): Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy, 156: 1–107.
Rasouli-Sadaghiani M.H., Barin M., Moghaddam S.S., Damalas C.A., Ghodrat K. (2018): Soil quality of an Iranian forest ecosystem after conversion to various types of land use. Environmental Monitoring and Assessment, 190: 1–9.
Rocci K.S., Lavallee J.M., Stewart C.E., Cotrufo M.F. (2021): Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Science of the Total Environment, 793: 148569.
Sanderman J., Hengl T., Fiske G.J. (2017): Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114: 9575–9580.
Saviozzi A., Levi-Minzi R., Riffaldi R. (1994): The effect of forty years of continuous corn cropping on soil organic matter characteristics. Plant and Soil, 160: 139–145.
Schad P. (2016): The International Soil Classification System WRB, Third Edition, 2014. In: Mueller L., Sheudshen A.K., Eulenstein F. (eds.): Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer: 563–571.
Shi Z., Crowell S., Luo Y., Moore B. (2018): Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 9: 1–11.
Singh G., Sharma R. (2017): Effects of different land use changes and spatial variation in rainfall on soil properties and soil carbon storage in Western Rajasthan, India. Annals of Advanced Agricultural Sciences, 1: 43–53.
Six J., Elliott E.T., Paustian K. (1999): Aggregate and soil organic matter dynamics under conventional and no‐tillage systems. Soil Science Society of America Journal, 63: 1350–1358.
Six J., Elliott E.T., Paustian K. (2000): Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32: 2099–2103.
Six J., Callewaert P., Lenders S., Gryze S.D., Morris S.J., Gregorich E.G., Paul E.A., Paustian K. (2002): Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66: 1981–1987.
Song Y.Y., Song C.C., Yang G.S., Miao Y.Q., Wang J., Guo Y. (2012): Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in Northeast China. Environmental Management, 50: 418–426.
Soussana J.F., Tallec T., Blanfort V. (2010): Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal, 4: 334–350.
Spaccini R., Mbagwu J.S.C., Conte P., Piccolo A. (2006): Changes of humic substances characteristics from forested to cultivated soils in Ethiopia. Geoderma, 132: 9–19.
Steiner C., Teixeira W.G., Lehmann J., Nehls T., Macêdo J.L.V.d., Blum W.E., Zech W. (2007): Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291: 275–290.
Sun C.Y., Liu J.S., Wang Y., Zheng N., Wu X.Q., Liu Q. (2012): Effect of long-term cultivation on soil organic carbon fractions and metal distribution in humic and fulvic acid in black soil, Northeast China. Soil Research, 50: 562–569.
Vance E.D., Brookes P.C., Jenkinson D.S. (1987): An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19: 703–707.
Villarino S.H., Studdert G.A., Baldassini P., Cendoya M.G., Ciuffoli L., Mastrángelo M., Piñeiro G. (2017): Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of the Total Environment, 575: 1056–1065.
Wagner M., Schmidt W., Imhof L., Grübel A., Jähn C., Georgi D., Petzoldt H. (2016): Characterization and quantification of humic substances 2D-fluorescence by usage of extended size exclusion chromatography. Water Research, 93: 98–109.
Walkley A., Black I.A. (1934): An examination of the Deg-tjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37: 29–38.
Wang L., Chen Z., Shang H., Wang J., Zhang P.Y. (2014): Impact of simulated acid rain on soil microbial community function in Masson pine seedlings. Electronic Journal of Biotechnology, 17: 199–203.
Wei X.R., Shao M.G., Gale W., Li L.H. (2014): Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports, 4: 1–6.
Wen L., Dong S., Li Y., Wang X., Li X., Shi J., Dong Q. (2013): The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil, 368: 329–340.
Witzgall K., Vidal A., Schubert D.I., Höschen C., Schweizer S.A., Buegger F., Pouteau V., Chenu C., Mueller C.W. (2021): Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12: 1–10.
Yan Z., Wu N. (2005): Rangeland privatization and its impacts on the Zoige wetlands on the Eastern Tibetan Plateau. Journal of Mountain Science, 2: 105–115.
Yang Y., Tilman D., Furey G., Lehman C. (2019): Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications, 10: 1–7.
Zavarzina A.G., Leontievsky A.A., Golovleva L.A., Trofimov S.Y. (2004): Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: An in vitro study. Soil Biology and Biochemistry, 36: 359–369.
Zhang H., Wu P.B., Yin A.J., Yang X.H., Zhang M., Gao C. (2017): Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the Total Environment, 592: 704–713.
Zhang H., Tang J., Liang S., Li Z., Wang J., Wang S. (2018): Early thawing after snow removal and no straw mulching accelerates organic carbon cycling in a paddy soil in Northeast China. Journal of Environmental Management, 209: 336–345.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti