A comparative assessment of the estimates of the saturated hydraulic conductivity of two anthropogenic soils and their impact on hydrological model simulations

https://doi.org/10.17221/33/2019-SWRCitation:Feki M., Ravazzani G., Barontini S., Ceppi A., Mancini M. (2020): A comparative assessment of the estimates of the saturated hydraulic conductivity of two anthropogenic soils and their impact on hydrological model simulations. Soil & Water Res., 15: 135-147.
supplementary materialdownload PDF

In this study, different methods were compared in order to determine the soil hydraulic conductivity at the saturation (Ks) of two heavily anthropized soils in northern Italy: an irrigated field and a landfill cover. In situ, laboratory measurements (falling head and evaporation method) and pedotransfer functions (ROSETTA and HYPRES) were used for the Ks estimation. In accordance with scientific literature, the results have shown that Ks is largely dependent on the type of technique used in taking the measurements. The ROSETTA and HYPRES pedotransfer functions show quite similar performances, while their easiness and convenient use make them potential alternative techniques for the Ks estimation in comparison with the in situ and laboratory measurements. The Ks estimate is sensitive to the selected method and this sensitivity affects the hydrological model simulations. Therefore, none of the tested methods can be considered as a benchmark, but the results found in this study confirm that the applied method for the determination of Ks, may provide a first estimate of Ks to be subsequently optimised after the simulations.

References:
Allen R.G., Pereira L.S., Raes D., Smith M. (1998): Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper No. 56, Rome, FAO.
 
Bagarello V., Provenzano G. (1996): Factors affecting field and laboratory measurement of saturated hydraulic conductivity. Transactions of the American Society of Agricultural Engineers, 39: 153–159. https://doi.org/10.13031/2013.27493
 
Baroni G., Facchi A., Gandolfi C., Ortuani B., Horeschi D., van Dam J.C. (2010): Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity. Hydrology and Earth System Sciences, 14: 251–270. https://doi.org/10.5194/hess-14-251-2010
 
Barontini S., Clerici A., Ranzi R., Bacchi B. (2005): Saturated hydraulic conductivity and water retention relationships for Alpine mountain. In: de Jong C., Collins D., Ranzi R. (eds.): Climate and Hydrology of Mountain Areas. Hoboken, John Wiley: 101–121.
 
Barontini S., Clerici A., Ranzi R., Bacchi B. (2009): A methodology to map the surface soil saturated hydraulic conductivity in mesoscale Alpine basins. In: Marks D. (ed.): Hydrology in Mountain Regions: Observations, Processes and Dynamics. IAHS Publication No. 326, Wallingford, IAHS: 112–118.
 
Basile A., Mele G., Terribile F. (2003): Soil hydraulic behavior of a selected benchmark soil involved in the landslide of Sarno 1998. Geoderma, 117: 331–346. https://doi.org/10.1016/S0016-7061(03)00132-0
 
Boscarello L., Ravazzani G., Cislaghi A., Mancini M. (2015): Regionalization of flow-duration curves through catchment classification with streamflow signatures and physiographic–climate indices. Journal of Hydrologic Engineering, 21: 05015027. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001307
 
Bouma J., van Lanen H.A.J. (1987): Transfer functions and threshold values: from soil characteristics to land qualities. In: Beek K.J., Burrough P.A., McCormack D.E. (eds.): Proc. ISSS/SSSA Workshop on Quantified Land Evaluation Procedures. Publication No. 6, Enschede, International Institute for Aerospace Survey and Earth Science: 106–111.
 
Bouwer H., Jackson R.D. (1974): Determining soil properties. In: van Schilfgaarde J. (ed.): Drainage for Agriculture. ASA Agronomy Monograph No. 17, Madison, ASA: 611–672.
 
Brooks R.H., Corey A.T. (1964): Hydraulic Properties of Porous Media. Hydrologic Paper No. 3, Fort Collins, Colorado State University.
 
Cambardella C.A., Gajda A.M., Doran J.W., Wienhold B.J., Kettler T.A. (2001): Estimation of particulate and total organic matter by weight loss-on-ignition. In: Lal R. et al. (eds.): Assessment Methods for Soil Carbon. Boca Raton, Lewis Publications: 349–359.
 
Cameira M.R., Fernando R.M., Pereira L.S. ( 2003): Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil & Tillage Research, 70: 131–140.
 
Ceppi A., Ravazzani G., Corbari C., Salerno R., Meucci S., Mancini M. (2014): Real-time drought forecasting system for irrigation management. Journal of Hydrology and Earth System sciences, 18: 3353–3366.  https://doi.org/10.5194/hess-18-3353-2014
 
Dane J.H., Topp C. (2002): Methods of Soil Analysis. 1st Ed., Madison, Soil Science Society of America.
 
De Pue J., Rezei M., Van Mervenne M., Cornelis Win M. (2019): The relevance of measuring saturated hydraulic conductivity: Sensitivity analysis and functional evaluation. Journal of Hydrology, 576: 628–638. https://doi.org/10.1016/j.jhydrol.2019.06.079
 
Dorsey J.D., Ward A.D., Fausey N.R., Bair E.S. (1990): A comparison of four field methods for measuring saturated hydraulic conductivity. Transactions of the American Society of Agricultural Engineers, 33: 1925–1931. https://doi.org/10.13031/2013.31560
 
Durner W., Lipsius K. (2005): Determining soil hydraulic properties. In: Anderson M.G. (ed.): Encyclopedia of Hydrological Sciences, Chapter 75, Chichester, John Wiley & Sons: 1121–1143.
 
Fallico C., Migliari E., Troisi S. (2006): Comparison of three measurement methods of saturated hydraulic conductivity. Hydrology and Earth System Sciences Discussions, 3: 987–1019.  https://doi.org/10.5194/hessd-3-987-2006
 
Feki M., Ravazzani G., Ceppi A., Mancini M. (2018a): Influence of soil hydraulic variability on soil moisture simulations and irrigation scheduling in a maize field. Agricultural Water Management, 202: 183–194. https://doi.org/10.1016/j.agwat.2018.02.024
 
Feki M., Ravazzani G., Ceppi A., Milleo G., Mancini M. (2018b): Impact of infiltration process modelling on soil water content simulations for irrigation management. Water, 10: 850. https://doi.org/10.3390/w10070850
 
Fodor N., Sándor R., Orfanus T., Lichner L., Rajkai K. (2011): Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma, 165: 60–68. https://doi.org/10.1016/j.geoderma.2011.07.004
 
Gupta R.K., Rudra R.P., Dickinson W.T., Patni N.K., Wall G.J. (1993): Comparison of hydraulic conductivity measured by various field methods. Transactions of the American Society of Agricultural Engineers, 36: 51–55.  https://doi.org/10.13031/2013.28313
 
Hargreaves G.H., Samani Z.A. (1985): Reference crop evapotranspiration from temperature. Transactions of the American Society of Agricultural Engineers, 1: 96–99. https://doi.org/10.13031/2013.26773
 
Huang M., Rodger H., Barbour S.L. (2015): An evaluation of air permeability measurements to characterize the saturated hydraulic conductivity of soil reclamation covers. Canadian Journal of Soil Science, 95: 15–26. https://doi.org/10.4141/cjss-2014-072
 
HYPROP (2010): HYPROP-UMS – Operation Manual. Munich, UMS GmbH.
 
Ibrahim M.M., Aliyu J. (2016): Comparison of methods for saturated hydraulic conductivity determination: Field, laboratory and empirical measurements (A Pre-view). British Journal of Applied Science & Technology, 15: 1–8.
 
Iovino M., Romano N. (2005): Inverse modeling of evaporation and multistep outflow experiments for determining soil hydraulic properties: a comparison. Rivista di Ingegneria Agraria, 2: 51–62.
 
Jačka L., Pavlásek J., Kuráž V., Pech P. (2014): A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma, 219–220: 82–88. https://doi.org/10.1016/j.geoderma.2013.12.027
 
Kanwar R.S., Rizvi H.A., Ahmed M., Horton R., Marlev S.J. (1989): Measurement of field-saturated hydraulic conductivity by using Guelph and velocity permeameters. Transactions of the American Society of Agricultural Engineers, 32: 1885–1890. https://doi.org/10.13031/2013.31239
 
KSAT (2012): KSAT-UMS Operation Manual. Munich, UMS GmbH.
 
Lee D.M., Reynolds W.D., Elrick D.E., Clothier B.E. (1985): A comparison of three field methods for measuring saturated hydraulic conductivity. Canadian Journal of Soil Science, 65: 563–573. https://doi.org/10.4141/cjss85-060
 
Mancini M., Ceppi A., Curti D., Ravazzani G., Feki M., Cerri L., Galletti L., Meucci S., Bianchi M., Senesi C., Cinquetti P. (2018): Real time monitoring of hydrological variables for operative landfill stability and percolation flux control. Environmental Engineering and Management Journal, 17: 2337–2348. https://doi.org/10.30638/eemj.2018.232
 
Mohanty B.P., Ankeny M.D., Horton R., Kanwar R.S. (1994): Spatial analysis of hydraulic conductivity measured using disc infiltrometers, Water Resources Research, 30: 2489–2498. https://doi.org/10.1029/94WR01052
 
Mualem Y. (1976): A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12: 513–522. https://doi.org/10.1029/WR012i003p00513
 
Nash J.E., Sutcliffe J.V. (1970): River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10: 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
 
Ravazzani G., Corbari C., Ceppi A., Feki M., Mancini M., Ferrari F., Gianfreda R., Colombo R., Ginocchi M., Meucci S., De Vecchi D., Dell’Acqua F., Ober G. (2017): From (cyber)space to ground: new technologies for smart farming. Hydrology Research, 48: 656–672. https://doi.org/10.2166/nh.2016.112
 
Reynolds W.D. (2008): Saturated hydraulic properties: Well permeameter. Chapter 76. In: Soil Sampling and Methods of Analysis, 2nd Ed., Boca Raton, CRC Press.
 
Reynolds W.D., Elrick D.E. (1986): A method for simultaneous in-situ measurements in the vadose zone of field saturated hydraulic conductivity, sorptivity, and the conductivity pressure head relationship. Ground Water Monitoring Review, 6: 84–89. https://doi.org/10.1111/j.1745-6592.1986.tb01229.x
 
Rezaei M., Seuntjens P., Shahidi R., Joris I., Boënne W., Al-Barri B., Cornelis W. (2016): The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations. Journal of Hydrology, 534: 251–265. https://doi.org/10.1016/j.jhydrol.2015.12.062
 
Ross P.J. (2003): Modeling soil water and solute transport – fast simplified numerical solutions. Agronomy Journal, 95: 1352–1361. https://doi.org/10.2134/agronj2003.1352
 
Schaap M.G., Bouten W. (1996): Modeling water retention curves of sandy soils using Neural Networks. Water Resources Research, 32: 3033–3040. https://doi.org/10.1029/96WR02278
 
Schindler U. (1980): Ein Schnellverfahren zur Messung der Wasserleitfähigkeit im teilgesättigten Boden an Stechzylinderproben. Archives of Agronomy and Soil Science, 44: 1–7.
 
Schwen A., Zimmermann M., Bodner G. (2014): Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations. Journal of Hydrology, 156: 169–181. https://doi.org/10.1016/j.jhydrol.2014.01.042
 
Shouse P.J., Mohanty B.P. (1998): Scaling of near-saturated hydraulic conductivity measured using disc infiltrometers, Water Resources Research Journal., 34: 1195–1205.
 
Ungaro F., Calzolari C. (2001): Using existing soil databases for estimating water-retention properties for soils of the Pianura Padano–Veneta region of North Italy. Geoderma, 99: 99–121. https://doi.org/10.1016/S0016-7061(00)00068-9
 
van Genuchten M. (1980): A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
 
Ventrella D., Losavio N., Vonella A.V., Leij F.J. (2005): Estimating hydraulic conductivity of a fine-textured soil using tension infiltrometry. Geoderma, 124: 267–277.  https://doi.org/10.1016/j.geoderma.2004.05.005
 
Webb T.H., Claydon J.J., Harris S.R. (2000): Quantifying variability of soil physical properties within soil series to address modern land-use issues on the Canterbury Plains, New Zealand. Australian Journal of Soil Research, 38: 1115–1129. https://doi.org/10.1071/SR99091
 
Wind G.P. (1966): Capillary conductivity data estimated by a simple method. In: Proc. UNESCO/IASH Symp. Water in the Unsaturated Zone, Wageningen: 181–191.
 
Wösten J.H.M., Lilly A., Nemes A., Le Bas C. (1999): Development and use of a database of hydraulic properties of European soils. Geoderma, 90: 169–185. https://doi.org/10.1016/S0016-7061(98)00132-3
 
Wösten J.H.M., Pachepsky Y.A., Rawls W.J. (2001): Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251: 123–150. https://doi.org/10.1016/S0022-1694(01)00464-4
 
supplementary materialdownload PDF

© 2020 Czech Academy of Agricultural Sciences