Effect of windbreaks on wind speed reduction and soil protection against wind erosion

https://doi.org/10.17221/45/2016-SWRCitation:Řeháček D., Khel T., Kučera J., Vopravil J., Petera M. (2017): Effect of windbreaks on wind speed reduction and soil protection against wind erosion. Soil & Water Res., 12: 128-135.
download PDF
Windbreaks form efficient soil protection against wind erosion particularly at the time when soil cover is not protected by the cultivated plant vegetation cover. The objective of this research was to evaluate windbreaks efficiency in terms of wind speed reduction. Wind speed along the windbreaks was measured in the cadastral areas of Dobrovíz and Středokluky (Czech Republic, Central Europe). The measurement was carried out by 4 stations placed at windward side (1 station at the distance of 3 times the height of the windbreak) and at leeward side of the windbreak (3 stations at the distance of 3, 6, and 9 times the height of the windbreak). Each station contained 2 anemometers situated 0.5 and 1 m above surface. The character of windbreak was described by terrestrial photogrammetry method as the value of optical porosity from the photo documentation of the windbreak at the time of field measurement. A significant dependence between the value of optical porosity and efficiency of windbreak emerged from the results. The correlation coefficient between optical porosity and wind speed reduction was in the range of 0.842 to 0.936 (statistical significance more than 95%). A significant effect of windbreak on airflow reduction was proven on the leeward side of windbreak in a belt corresponding to approximately six times the height of the windbreaks depending on the optical porosity and it was expressed by a polynomial equation.  
References:
Abel N., Baxter J., Campbell A., Cleugh H., Fargher J., Lambeck R., Prinsley R., Prosser M., Ried R., Revell G., Schmidt C., Stirzaker R., Thornburn P. (1997): Design Principles for Farm Forestry: A Guide to Assist Farmers to Decide Where to Place Trees and Farm Plantations on Farms. Canberra, Rural Industries Research and Development Corporation.
 
Bird P. R., Bicknell D., Bulman P. A., Burke S. J. A., Leys J. F., Parker J. N., Van Der Sommen F. J., Voller P. (1992): The role of shelter in Australia for protecting soils, plants and livestock. Agroforestry Systems, 20, 59-86  https://doi.org/10.1007/BF00055305
 
Brandle J.R., Hodges L., Zhou X.H. (2004): Windbreaks in North American agricultural systems. Agroforestry Systems, 61: 65–78.
 
Burke S. (1998): Windbreaks. Port Melbourne, Inkata Press.
 
Cornelis W.M., Gabriels D. (2005): Optimal windbreak design for wind-erosion control. Journal of Arid Environments, 61, 315-332  https://doi.org/10.1016/j.jaridenv.2004.10.005
 
Cornelis W.M., Gabriels D., De Gryse S., Hartmann R. (2000): The efficiency of vegetative windbreaks in combating with erosion: Simulation and scaling. Science et Changements Planétaires – Sécheresse, 11: 52–57. (in French)
 
Guan Dexin, Zhang Yushu, Zhu Tingyao (2003): A wind-tunnel study of windbreak drag. Agricultural and Forest Meteorology, 118, 75-84  https://doi.org/10.1016/S0168-1923(03)00069-8
 
Heisler G.M., DeWalle D.R. (1988): Effects of windbreak structure on wind flow. Agriculture, Ecosystems & Environment, 22/23: 41–69.
 
Janeček M., Dostál T.,Kozlovsky-Dufková J., Dumbrov-ský M., Hůla J., Kadlec V., Kovář P., Krása T., Kubátová E., Kobzová D., Kudrnáčová M., Novotný I., Podhrázská J., Pražan J., Procházková E., Středová I., Toman F., Vopravil J., Vlasák J. (2012): Erosion Control in the Czech Republic – Handbook. Prague, Czech University of Life Sciences. (in Czech)
 
Kenney W.A (1987): A method for estimating windbreak porosity using digitized photographic silhouettes. Agricultural and Forest Meteorology, 39, 91-94  https://doi.org/10.1016/0168-1923(87)90028-1
 
Kuhns M. (2012): Windbreak Benefits and Design. (Utah Forest Facts/Rural-Conservation Forestry). Logan, Utah State University Extension.
 
Lampartová Ivana, Schneider Jiří, Vyskot Ilja, Rajnoch Milan, Litschmann Tomáš (2015): Impact of protective shelterbelt microclimate characteristics. Ekológia (Bratislava), 34, -  https://doi.org/10.1515/eko-2015-0011
 
Podhrázská J., Novotný I. (2007): Evaluation of the wind erosion risks in GIS. Soil and Water Research, 2: 10–13.
 
Santiago J.L., Martín F., Cuerva A., Bezdenejnykh N., Sanz-Andrés A. (2007): Experimental and numerical study of wind flow behind windbreaks. Atmospheric Environment, 41, 6406-6420  https://doi.org/10.1016/j.atmosenv.2007.01.014
 
Středa Tomáš, Malenová Petra, Pokladníková Hana, Rožnovský Jaroslav (): The efficiency of windbreaks on the basis of wind field and optical porosity measurement. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 56, 281-288  https://doi.org/10.11118/actaun200856040281
 
Středová Hana, Podhrázská Jana, Litschmann Tomáš, Středa Tomáš, Rožnovský Jaroslav (2012): Aerodynamic Parameters of Windbreak Based on its Optical Porosity. Contributions to Geophysics and Geodesy, 42, -  https://doi.org/10.2478/v10126-012-0008-5
 
Středová H., Spáčilová B., Podhrázská J., Chuchma F. (2015): A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils. Moravian Geographical Reports, 23: 56–62.
 
Tamang B., Andreu M.G., Friedman M.H., Rockwood D.L. (2012): Windbreak designs and planting for Florida agricultural fields. FOR227. Gainesville, University of Florida Institute of Food and Agricultural Sciences. Available at http: //edis.ifas.ufl.edu (accessed October 2015).
 
Van Thuyet Dang, Van Do Tran, Sato Tamotsu, Thai Hung Trieu (2014): Effects of species and shelterbelt structure on wind speed reduction in shelter. Agroforestry Systems, 88, 237-244  https://doi.org/10.1007/s10457-013-9671-4
 
Torita Hiroyuki, Satou Hajime (2007): Relationship between shelterbelt structure and mean wind reduction. Agricultural and Forest Meteorology, 145, 186-194  https://doi.org/10.1016/j.agrformet.2007.04.018
 
R. S. Van Pelt , T. M. Zobeck , M. C. Baddock , J. J. Cox (2010): Design, Construction, and Calibration of a Portable Boundary Layer Wind Tunnel for Field Use. Transactions of the ASABE, 53, 1413-1422  https://doi.org/10.13031/2013.34911
 
Vigiak Olga, Sterk Geert, Warren Andrew, Hagen Lawrence J. (2003): Spatial modeling of wind speed around windbreaks. CATENA, 52, 273-288  https://doi.org/10.1016/S0341-8162(03)00018-3
 
Wu Tonggui, Yu Mukui, Wang Geoff, Wang Zongxing, Duan Xi, Dong Yi, Cheng Xiangrong (2013): Effects of stand structure on wind speed reduction in a Metasequoia glyptostroboides shelterbelt. Agroforestry Systems, 87, 251-257  https://doi.org/10.1007/s10457-012-9540-6
 
download PDF

© 2019 Czech Academy of Agricultural Sciences