Predictors for digital mapping of forest soil organic carbon stocks in different types of landscape

Borůvka L., Vašát R., Šrámek V., Neudertová Hellebrandová K., Fadrhonsová V., Sáňka M., Pavlů L., Sáňka O., Vacek O., Němeček K., Nozari S., Oppong Sarkodie V.Y. (2022): Predictors for digital mapping of forest soil organic carbon stocks in different types of landscape. Soil & Water Res., 17: 69−79. 

download PDF

Forest soils have a high potential to store carbon and thus mitigate climate change. The information on spatial distribution of soil organic carbon (SOC) stocks is thus very important. This study aims to analyse the importance of environmental predictors for forest SOC stock prediction at the regional and national scale in the Czech Republic. A big database of forest soil data for more than 7 000 sites was compiled from several surveys. SOC stocks were calculated from SOC content and bulk density for the topsoil mineral layer 0–30 cm. Spatial prediction models were developed separately for individual natural forest areas and for four subsets with different altitude range, using random forest method. The importance of environmental predictors in the models strongly differs between regions and altitudes. At lower altitudes, forest edaphic series and soil classes are strong predictors, while at higher altitudes the predictors related to topography become more important. The importance of soil classes depends on the pedodiversity level and on the difference in SOC stock between the classes. The contribution of forest types as predictors is limited when one (mostly coniferous) type dominates. Better prediction results can be obtained in smaller, but consistent regions, like some natural forest areas.

ARCDATA PRAHA, ZÚ, ČSÚ (2016): ArcČR 500 – Digital Geogrphic Database, Version 3.3. Available at (accessed Oct 23, 2020). (in Czech)
Bai X., Fernandez I.J. (2020): Comparing publicly available databases to evaluate soil organic carbon in Maine, USA. Soil Science Society of America Journal, 84: 1722–1736.
Baltensweiler A., Walthert L., Hanewinkel M., Zimmermann S., Nussbaum M. (2021): Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland. Geoderma Regional, 27: e00437.
Baumgarten A., Haslmayr H.-P., Schwarz M., Huber S., Weiss P., Obersteiner E., Aust G., Englisch M., Horvath D., Leitgeb E., Foldal C., Rodlauer C., Bohner A., Spiegel H., Jandl R. (2021): Organic soil carbon in Austria – Status quo and foreseeable trends. Geoderma, 402: 115214.
Bojko O., Kabala C. (2017): Organic carbon pools in mountain soils – Sources of variability and predicted changes in relation to climate and land use changes. Catena, 149: 209–220.
Borůvka L., Penížek V., Kozák J., Marhoul A.M., Vacek O., Šrámek V., Žížala D., Poláková Š., Smatanová M., Fiala P. (2018): Combining and harmonizing soil data from different sources: Problems and approaches. In: Arrouays D., Savin I., Leenaars J., McBratney A.B. (eds.): GlobalSoilMap. Digital Soil Mapping from Country to Globe. Leiden, CRC Press/Balkema: 29–34.
Breiman L. (2001): Random forests. Machine Learning, 45: 5–32.
Calvo de Anta R., Luís E., Febrero-Bande M., Galiñanes J., Macías F., Ortíz R., Casás F. (2020): Soil organic carbon in peninsular Spain: Influence of environmental factors and spatial distribution. Geoderma, 370: 114365.
Černý J., Pokorný R., Vejpustková M., Šrámek V., Bednář P. (2020): Air temperature is the main driving factor of radiation use efficiency and carbon storage of mature Norway spruce stands under global climate change. International Journal of Biometeorology, 64: 1599–1611.
Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J. (2015): System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8: 1991–2007.
Cremer M., Kern N.V., Prietzel J. (2016): Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. Forest Ecology and Management, 367: 30–40.
Chuman T., Oulehle F., Zajícová K., Hruška J. (2021): The legacy of acidic deposition controls soil organic carbon pools in temperate forests across the Czech Republic. European Journal of Soil Science, 72: 1780–1801.
De Vos B., Cools N., Ilvesniemi H., Vesterdal L., Vanguelova E., Carnicelli S. (2015): Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma, 251–252: 33–46.
Dobor L., Hlásny T., Rammer W., Barka I., Trombik J., Pavlenda P., Šebeň V., Štěpánek P., Seidl R. (2018): Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agricultural and Forest Meteorology, 263: 308–322.
EEA (2018): CORINE Land Cover (CLC) 2018, Version 20, European Environment Agency, Kopenhagen, Denmark. Available at data/corine-land-cover-accounting-layers (accessed Oct 23, 2020).
Ellili Y., Walter C., Michot D., Pichelin P., Lemercier B. (2019): Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351: 1–8.
Fiala P., Reininger D., Samek T., Němec P., Sušil A. (2013): Forest Nutrition Survey at the Territory of the Czech Republic 1996–2011. Brno, Central Institute for Supervising and Testing in Agriculture. (in Czech)
Fick S.E., Hijmans R.J. (2017): WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302–4315.
Forest Management Institute (2007): National Forest Inventory in the Czech Republic 2001–2004. Introduction, Methods, Results. Brandýs and Labem, Forest Management Institute.
Gholizadeh A., Viscarra Rossel R.A., Saberioon M., Borůvka L., Kratina J., Pavlů L. (2021): National-scale spectroscopic assessment of soil organic carbon in forests of the Czech Republic. Geoderma, 385: 114832.
Heitkamp F., Ahrends B., Evers J., Meesenburg H. (2021): Spatial 3D mapping of forest soil carbon stocks in Hesse, Germany. Journal of Plant Nutrition and Soil Science, 184: 635–656.
Hoffmann U., Hoffmann T., Johnson E.A., Kuhn N.J. (2014): Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta). Catena, 113: 107–121.
Honeysett J., Ratkowsky D. (1989): The use of ignition loss to estimate bulk density of forest soils. European Journal of Soil Science, 40: 299–308.
Hounkpatin K.O.L., Stendahl J., Lundblad M., Karltun E. (2021): Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data. Soil, 7: 377–398.
Jonard M., Nicolas M., Coomes D.A., Caignet I., Saenger A., Ponette Q. (2017): Forest soils in France are sequestering substantial amounts of carbon. Science of the Total Environment, 574: 616–628.
Kjønaas O.J., Bárcena T.G., Hylen G., Nordbakken J.-F., Økland T. (2021): Boreal tree species change as a climate mitigation strategy: Impact on ecosystem C and N stocks and soil nutrient levels. Ecosphere, 12: e03826.
Kozák J., Němeček J., Jetmar M. (1996): The database of soil information system – PUGIS. Rostlinná Výroba, 42: 529–534.
Lal R. (2005): Forest soils and carbon sequestration. Forest Ecology and Management, 220: 242–258.
Lamichhane S., Kumar L., Wilson B. (2019): Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352: 395–413.
Li Y., Zhao Z., Wei S., Sun D., Yang Q., Ding X. (2021): Prediction of regional forest soil nutrients based on Gaofen-1 remote sensing data. Forests, 12: 1430.
Lorenz M., Becher G. (eds.) (2012): Forest Condition in Europe, 2012. Technical Report of ICP Forests. Work Report of the Thünen Institute for World Forestry 2012/1. Hamburg, ICP Forests.
Martin M.P., Orton T.G., Lacarce E., Meersmans J., Saby N.P.A., Paroissien J.B., Jolivet C., Boulonne L., Arrouays D. (2014): Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale. Geoderma, 223–225: 97–107.
McBratney A.B., Mendonca Santos M.L., Minasny B. (2003): On digital soil mapping. Geoderma, 117: 3–52.
Miller B.A., Koszinski S., Wehrhan M., Sommer M. (2015): Impact of multi-scale predictor selection for modeling soil properties. Geoderma, 239–240: 97–106.
Minasny B., McBratney A.B., Malone B.P., Wheeler I. (2013): Digital mapping of soil carbon. Advances of Agronomy, 118: 1–47.
Mulder V.L., Lacoste M., Martin M.P., Richer-de-Forges A., Arrouays D. (2015): Understanding large-extent controls of soil organic carbon storage in relation to soil depth and soil-landscape systems. Global Biogeochemical Cycles, 29: 1210–1229.
Nitsch P., Kaupenjohann M., Wulf M. (2018): Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma, 310: 65–76.
Nussbaum M., Papritz A., Baltensweiler A., Waltheart L. (2014): Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging. Geoscientific Model Development, 7: 1197–1210.
Osipov A.F., Bobkova K.S., Dymov A.A. (2021): Carbon stocks of soils under forest in the Komi Republic of Russia. Geoderma Regional, 27: e00427.
Ostrowska A., Porebska G., Kanafa M. (2010): Carbon accumulation and distribution in profiles of forest soils. Polish Journal of Environmental Studies, 19: 1307–1315.
Ottoy S., De Vos B., Sindayihebura A., Hermy M., Van Orshoven J. (2017): Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation. Ecological Indicators, 77: 139–150.
Prietzel J., Christophel D. (2014): Organic carbon stocks in forest soils of the German Alps. Geoderma, 221–222: 28–39.
Priwitzer T., Pajtík J., Konôpka B., Ištoňa J., Pavlenda P. (2009): Carbon allocation in forest ecosystem – Case studies from young pine stands. Lesnícky Časopis – Forestry Journal, 55: 239–250.
Rial M., Martínez Cortizas M., Rodríguz-Lado L. (2017): Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Science of the Total Environment, 609: 1411–1422.
Samuel-Rosa A., Heuvelink G.B.M., Vesques G.M., Anjos L.H.C. (2015): Do more detailed environmental covariates deliver more accurate soil maps? Geoderma, 243–244: 214–227.
Šrámek V., Jurkovská L., Fadrhonsová V., Hellebrandová-Neudertová K. (2013): Forest soil chemistry in relation to the forest site classification categories used in the Czech Republic – Results of the EU “BioSoil” forest soil monitoring project. Zprávy Lesnického Výzkumu, 58: 314–323.
Tungalag М., Gerelbaatar S., Lobanov A.I. (2020): Organic carbon stocks in the forest soils of Northern Mongolia. Lesnoy Zhurnal, 2020: 169–176.
Tziachris P., Aschonitis V., Chatzistathis T. (2019): Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters. Catena, 174: 206–216.
ÚHÚL (2019): Typological map 2019. Ústav pro hospodářskou úpravu lesů. Available at (in Czech)
Vacek O., Vašát R., Borůvka L. (2020): Quantifying the pedodiversity-elevation relations. Geoderma, 373: 114441.
Vanguelova E.I., Bonifacio E., De Vos B., Hoosbeek M.R., Berger T.W., Vesterdal L., Armolaitis K., Celi L., Dinca L., Kjønaas O.J., Pavlenda P., Pumpanen J., Püttsepp Ü., Reidy B., Simončič P., Tobin B., Zhiyanski M. (2016): Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales – Review and recommendations. Environmental Monitoring and Assessment, 188: 630.
Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 85–93.
Wen D., He N. (2016): Forest carbon storage along the north-south transect of eastern China: Spatial patterns, allocation, and influencing factors. Ecological Indicators, 61: 960–967.
Were K., Bui D.T., Dick Ø.B., Singh B.R. (2015): A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52: 394–403.
Wiesmeier M., Spörlein P., Geuß U., Hangen E., Haug S., Reischl A., Schilling B., von Lützow M., Kögel-Knabner I. (2012): Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology, 18: 2233–2245.
Yamashita N., Ishizuka S., Hashimoto S., Ugawa S., Nanko K., Osone Y., Iwahashi J., Sakai Y., Inatomi M., Kawanishi A., Morisada K., Tanaka N., Aizawa S., Imaya A., Takahashi M., Kaneko S., Miura S., Hirai K. (2022): National-scale 3D mapping of soil organic carbon in a Japanese forest considering microtopography and tephra deposition. Geoderma, 406: 115534.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti