Biophysicochemical properties of the eroded southern chernozem (Trans-Ural Steppe, Russia) with emphasis on the 13C NMR spectroscopy of humic acids

https://doi.org/10.17221/52/2022-SWRCitation:

Suleymanov A., Polyakov V., Komissarov M., Suleymanov R., Gabbasova I., Garipov T., Saifullin I., Abakumov E. (2022): Biophysicochemical properties of the eroded southern chernozem (Trans-Ural Steppe, Russia) with emphasis on the 13C NMR spectroscopy of humic acids. Soil & Water Res., 17: 222–231. 

download PDF

The morphological, water-physical and chemical properties, basal respiration of the southern chernozem (Chernozem Haplic Endosalic) and erosional sediment in the Trans-Ural steppe zone (Republic of Bashkortostan, Russia) were studied. The surface soil horizon significantly differs from the sediment by the better structure and water aggregate stability. The particle size distribution of the sediments, due to erosion, contains more silt and clay fractions compared to the slope soil. It indicates a great potential for the carbon saturation of the soil which is limited by degradation. The slope soil is slightly saline, the type of the salinisation is sulfate with the participation of hydrocarbonates. The СО2 emissions, the organic carbon and alkaline-hydrolysable nitrogen content is low; and significantly lower than in the erosional sediment, but the content of exchangeable cations and water-soluble salts is higher. The structural composition of the humic acid (HA) extracted from the soil and erosional sediments was determined by 13C NMR spectroscopy. Aliphatic structural fragments predominate (65%) with a maximum signal level in the area of C, H-alkyls in the HA of the surface horizon. In the HA of the erosional sediment, the proportion of aromatic structural fragments is higher (up to 59%), which is associated with the processes of hydrolysis and condensation. In the HA of the slope soil, the formation of predominantly C, H-alkyls, oxygen-containing groups, including carboxyl ones, takes place. Differences in the composition of the structural fragments and functional groups of the soil and sediment HA are due to the different stability of the organic matter under conditions of the development of the soil erosion processes.

References:
Abakumov E., Maksimova E., Tsibart A. (2017): Assessment of postfire soils degradation dynamics: Stability and molecular composition of humic acids with use of spectroscopy methods. Land Degradation & Development, 29: 2092–2101.
 
Abdrakhmanov R.F., Popov V.G. (1999): Mineral Medicinal Waters of Bashkortostan. Ufa, Gilem. (in Russian)
 
Arinushkina E.V. (1970): A Handbook of Chemical Analysis of Soils. Moscow, Moscow State University. (in Russian)
 
Banach-Szott M., Debska B., Tobiasova E. (2021): Properties of humic acids depending on the land use in different parts of Slovakia. Environmental Science and Pollution Research, 28: 58068–58080. https://doi.org/10.1007/s11356-021-14616-9
 
Chukov S.N., Lodygin E.D., Abakumov E.V. (2018): Application of 13C NMR spectroscopy to the study of soil organic matter: A review of publications. Eurasian Soil Science, 51: 889–900. https://doi.org/10.1134/S1064229318080021
 
Cocozza C., D’orazio V., Miano T.M., Shotyk W. (2003): Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Organic Geochemistry, 34: 49–60. https://doi.org/10.1016/S0146-6380(02)00208-5
 
Danchenko N.N., Artemyeva Z.S., Kolyagin Y.G., Kogut B.M. (2020): Features of the chemical structure of different organic matter pools in Haplic Chernozem of the Streletskaya steppe: 13C MAS NMR study. Environmental Research, 191: 110205. https://doi.org/10.1016/j.envres.2020.110205
 
Dutta K., Schuur E.A.G., Neff J.C., Zimov S.A. (2006): Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology, 12: 2336–2351. https://doi.org/10.1111/j.1365-2486.2006.01259.x
 
Ejarque E., Abakumov E. (2016): Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth, 7: 153–165. https://doi.org/10.5194/se-7-153-2016
 
Gabbasova I.M., Suleimanov R.R., Komissarov M.A., Garipov T.T., Sidorova L.V., Khaziev F.K., Khabirov I.K., Fruehauf M., Liebelt P. (2016): Temporal changes of eroded soils depending on their agricultural use in the southern Cis-Ural region. Eurasian Soil Science, 49: 1204–1210. https://doi.org/10.1134/S1064229316100070
 
Golosov V.N., Paramonova T., Kust G., Litvin L., Andre-eva O. (2022): Identification of soil resources problems in European Russia. In: Li R., Napier T.L., El-Swaify S.A., Sabir M., Rienzi E. (eds.): Global Degradation of Soil and Water Resources. Singapore, Springer: 449–473.
 
Hassink J. (1997): The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191: 77–87. https://doi.org/10.1023/A:1004213929699
 
Höfle S., Rethemeyer J., Mueller C.W., John S. (2013): Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta. Biogeosciences, 10: 3145–3158. https://doi.org/10.5194/bg-10-3145-2013
 
IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (Update 2015). Rome, FAO.
 
Jenkinson D.S., Powlson D.S. (1976): The effects of biocidal treatments on metabolism in soil – V: A method for measuring soil biomass. Soil Biology and Biochemistry, 8: 209–213. https://doi.org/10.1016/0038-0717(76)90005-5
 
Kattsov V.M. (2017). Report on Climate Risks in the Russian Federation. Saint Petersburg, FGBU “GGO”. (in Russian)
 
Khasanova R.F., Suyundukova M.B., Suyundukov Ya.T., Akhmetov F.R. (2014): Optimization of agrophysical properties of ordinary chernozem under the influence of perennial grasses. Fundamental Research, 8–5: 1095–1099.
 
Khaziev F.K. (1995): Soils of Bashkortostan. Vol. 1. Ecologic-genetic and Agroproductive Characterization. Ufa, Gilem. (in Russian)
 
Kholodov V.A., Konstantinov A.I., Kudryavtsev A.V., Perminova I.V. (2011): Structure of humic acids in zonal soils from 13C NMR data. Eurasian Soil Science, 44: 976–983. https://doi.org/10.1134/S1064229311090043
 
Knoblauch C., Beer C., Sosnin A., Wagner D., Pfeiffer E.-M. (2013): Predicting long-term carbon mineralization and trace gas production from thawing permafrost of North-East Siberia. Global Change Biology, 19: 1160–1172. https://doi.org/10.1111/gcb.12116
 
Komissarov M.A., Gabbasova I.M. (2014): Snowmelt-induced soil erosion on gentle slopes in the southern Cis-Ural region. Eurasian Soil Science, 47: 598–607. https://doi.org/10.1134/S1064229314060039
 
Komissarov M.A., Gabbasova I.M. (2017): Erosion of agrochernozems under sprinkler irrigation and rainfall simulation in the southern forest-steppe of Bashkir Cis-Ural region. Eurasian Soil Science, 50: 253–261. https://doi.org/10.1134/S1064229317020077
 
Krasilnikov P., Arnold R., Ibáñez J-J., Shoba S. (2009): A Handbook of Soil Terminology, Correlation and Classification. London, Routledge.
 
Lefèvre C., Rekik F., Alcantara V., Wiese L. (2017): Soil organic carbon – the hidden potential. Rome, FAO.
 
Mamontov V.G. (2002): Interpretation of water extraction data from saline soils. Methodical Manual. Moscow, Moscow Timiryazev Agricultural Academy. (in Russian)
 
Nicolás C., Hernández T., García C. (2012): Organic amendments as strategy to increase organic matter in particle-size fractions of a semi-arid soil. Applied Soil Ecology, 57: 50–58. https://doi.org/10.1016/j.apsoil.2012.02.018
 
Orlov D.S. (1995): Humic Substances of Soils and General Theory of Humification. Boca Raton, CRC Press.
 
Orlov D.S., Grindel N.M. (1967) Spectrophotometric determination of humus in soil. Eurasian Soil Science, 1: 112–122.
 
Ovsepyan L.A., Kurganova I.N., Lopes De Gerenyu V.O., Kuzyakov Y.V., Rusakov A.V. (2020): Changes in the fractional composition of organic matter in the soils of the forest–steppe zone during their postagrogenic evolution. Eurasian Soil Science, 53: 50–61. https://doi.org/10.1134/S1064229320010123
 
Piccolo A. (1996): Humus and soil conservation. In: Piccolo A. (ed.): Humic Substances in Terrestrial Ecosystems. Amsterdam, Elsevier: 225–264.
 
Polyakov V., Abakumov E. (2021): Assessments of organic carbon stabilization using the spectroscopic characteristics of humic acids separated from soils of the Lena River Delta. Separations, 8: 87. https://doi.org/10.3390/separations8060087
 
Schimel D.S. (1995): Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1: 77–91. https://doi.org/10.1111/j.1365-2486.1995.tb00008.x
 
Semenov V.M., Tulina A.S., Semenova N.A., Ivannikova L.A. (2013): Humification and nonhumification pathways of the organic matter stabilization in soil: A review. Eurasian Soil Science, 46: 355–368. https://doi.org/10.1134/S106422931304011X
 
Semenov V.M., Kogut B.M. (2015): Soil Organic Matter. Moscow, GEOS. (in Russian)
 
Six J., Conant R.T., Paul E.A., Paustian K. (2002): Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241: 155–176. https://doi.org/10.1023/A:1016125726789
 
Sobol N.V., Gabbasova I.M., Komissarov M.A. (2015): Impact of climate changes on erosion processes in Republic of Bashkortostan. Arid Ecosystems, 5: 216–221. https://doi.org/10.1134/S2079096115040137
 
Suleymanov A., Gabbasova I., Suleymanov R., Abakumov E., Polyakov V., Liebelt P. (2021): Mapping soil organic carbon under erosion processes using remote sensing. Hungarian Geographical Bulletin, 70: 49–64. https://doi.org/10.15201/hungeobull.70.1.4
 
Swift R.S. (1996): Organic matter characterization. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds.): Methods of Soil Analysis. Part 3. Chemical methods. Madison, Soil Science Society of America, Inc.: 1011–1069.
 
Thompson S.O., Chersters G. (1970): Infrared spectra and differential thermograms of lignins and soil humic material saturated with different cations. Soil Science, 21: 265–272. https://doi.org/10.1111/j.1365-2389.1970.tb01176.x
 
Trubetskoi O.A., Trubetskaya O.E. (2011): 13C-NMR analysis of components of chernozem humic acids and their fractions with different molecular sizes and electrophoretic mobilities. Eurasian Soil Science, 44: 281–285.  https://doi.org/10.1134/S1064229311030148
 
Tsybulko Н.Н., Zhukova I.I., Yukhnovets A.V. (2005): Effect of fertilizers on the structural status of soddy-podzolic soil subjected to water erosion and the yield of agricultural crops. Agrochemistry, 6: 19–25. (in Russian)
 
Vadyunina A.F., Korchagina Z.A. (1986): Methods for Studying the Physical Properties of Soils. Moscow, Agropromizdat.
 
Vishnyakova O.V., Chimitdorzhieva G.D., Ayurova D.B. (2011): Structural changes in humic acids from arable chernozems and meadow-chernozemic cryogenic soils of Transbaikalia. Agrochemistry, 10: 3–8. (in Russian)
 
Wiesmeier M., Lungu M., Cerbari V., Boincean B., Hübner R., Kögel-Knabner I. (2018): Rebuilding soil carbon in degraded steppe soils of Eastern Europe: The importance of windbreaks and improved cropland management. Land Degradation & Development, 29: 875–883.
 
Yao S.-H., Zhang Y.-L., Han Y., Han X.-Z., Mao J.-D., Zhang B. (2019): Labile and recalcitrant components of organic matter of a Mollisol changed with land use and plant litter management: An advanced 13C-NMR study. Science of the Total Environment, 660: 1–10. https://doi.org/10.1016/j.scitotenv.2018.12.403
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti